Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 743, 2019.
Article in English | MEDLINE | ID: mdl-31396034

ABSTRACT

OBJECTIVE: To investigate the potential regional homogeneity (ReHo) brain activity changes in patients with corneal ulcer (CU) and their possible relationship with clinical symptoms. MATERIALS AND METHODS: Forty patients with CU (26 men and 14 women), and 40 healthy controls (HCs) (26 men and 14 women) closely matched in age, sex, and weight underwent resting-state functional MRI scans, respectively. The ReHo method was applied to evaluate synchronous neural activity changes. Receiver operating characteristic curve (ROC curve) was used to show high test-retest stability and high degree of sensitivity and specificity. We utilized the correlation analysis to calculate the relationship between the average ReHo signal values in different brain areas and the clinical symptoms in CU patients. RESULTS: Compared with the HCs, CU patients had significantly increased ReHo values in right cerebellum posterior lobe, left cerebellum posterior lobe, left inferior temporal gyrus, right lingual gyrus, left middle frontal gyrus, left angular gyrus, left cingulate gyrus, right angular gyrus and bilateral superior frontal gyrus, and decreased ReHo values in right anterior cingulate and left precentral gyrus. ROC curve analysis of each brain regions showed the accuracy of AUC was perfect except the right cerebellum posterior lobe. Nevertheless, there was no clear evidence of prominent relevance between the average ReHo values in brain areas and the clinical symptoms. CONCLUSION: Corneal ulcer caused dysfunctional adaption in different brain areas, which including relatively increased values and decreased values. This finding may help us take a further step in exploring the underlying pathologic mechanisms of CU.

2.
Mol Med Rep ; 20(2): 1707-1715, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31257530

ABSTRACT

Recent studies have reported structural and functional abnormalities in multiple brain regions of classical trigeminal neuralgia (CTN) patients. Differences in spontaneous neuronal activity between CTN patients and healthy subjects, however, remain unknown. The aim of the present study was to investigate alterations in brain activity by application of amplitude of low frequency fluctuation (ALFF), thus analyzing the correlation between durations of spontaneous pain intensity and ALFF values in CTN patients. A total of 28 CTN patients (male, n=12; female, n=16) and 28 healthy controls (HCs; male, n=12; female, n=16) matched for age and sex were enrolled. All subjects underwent resting­state functional magnetic resonance imaging and changes in spontaneous brain activity were investigated using an ALFF method. Receiver operating characteristic (ROC) curve analysis was applied to differentiate ALFF values of CTN patients from HCs. Altered ALFF values and clinical manifestations were evaluated using Pearson's correlation analysis. ALFF values of the bilateral inferior cerebellum, bilateral fusiform gyrus, right precentral gyrus, left inferior temporal gyrus, right superior cerebellum, left inferior occipital gyrus and right superior occipital gyrus were significantly higher in CTN patients when compared to HCs. ROC curve analysis of each brain revealed a near­perfect AUC accuracy. Pearson's correlation analysis revealed the visual analog scale of the right eye to be positively correlated with both left inferior temporal and occipital gyral findings, while episode duration likewise was positively associated with left inferior temporal gyral findings. CTN patients exhibited abnormal spontaneous activity in multiple brain regions closely related to pain regulation and perception, while VAS and CTN episode duration were positively correlated with ALFF signal values in some brain regions. The present findings provide further insight into the pathological mechanisms underlying CTN.


Subject(s)
Brain/diagnostic imaging , Trigeminal Neuralgia/diagnostic imaging , Adult , Brain/physiopathology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Trigeminal Neuralgia/physiopathology
3.
Pain Pract ; 19(4): 397-406, 2019 04.
Article in English | MEDLINE | ID: mdl-30536573

ABSTRACT

OBJECTIVE: Neuroimaging studies have shown that patients with pain-related conditions have altered neuronal activity and structural functions. The purpose of this study was to investigate whether patients with classical trigeminal neuralgia (CTN) exhibit changes in corresponding neuronal activity via analysis of neuronal activity regional homogeneity (ReHo). METHODS: A total of 28 patients presenting with sore eyes (12 men and 16 women) were matched with 28 healthy controls (12 men and 16 women). All participants underwent functional magnetic resonance imaging (fMRI). This ReHo method was used to assess the consistency of changes in neural activity in various brain regions. The receiver operating characteristic (ROC) curve was applied to differentiate ReHo values of patients with CTN from ReHo values of healthy controls. Pearson's correlation analysis was applied to evaluate the correlation between ReHo values of different brain regions of patients with CTN and clinical manifestations. RESULTS: Compared with healthy controls, patients with CTN were found to have increased ReHo values in the inferior cerebellum bilaterally, right inferior temporal gyrus, right middle occipital gyrus, right fusiform gyrus, right superior frontal gyrus, and right precentral gyrus. ROC curve analysis of each brain region revealed near-perfect accuracy regarding the area under the curve. However, no correlation between ReHo values and clinical manifestations in patients with CTN was found. CONCLUSIONS: CTN is associated with altered neuronal networks in different areas of the brain. ReHo values all possess different degrees of change, implying that CTN has a certain impact on cerebral function.


Subject(s)
Brain/physiopathology , Trigeminal Neuralgia/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , ROC Curve
4.
Onco Targets Ther ; 10: 3435-3451, 2017.
Article in English | MEDLINE | ID: mdl-28744148

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients' prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3' untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...