Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Artif Organs ; 47(3): 162-172, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450429

ABSTRACT

BACKGROUND: The hydrodynamic suspension structure design of the axial blood pump impeller can avoid the problems associated with using mechanical bearings. However, the particular impeller structure will impact the hydraulic performance and hemolysis of the blood pump. METHOD: This article combines computational fluid dynamics (CFD) with the Lagrange particle tracking method, aiming to improve the blood pump's hydraulic and hemolysis performance. It analyzes the flow characteristics and hemolysis performance inside the pump. It optimizes the taper of the impeller hub, the number of blades, and the inclination angle of the circumferential groove at the top of the blade. RESULTS: Under certain rotational speed conditions, an increase in the taper of the impeller hub or the number of blades can increase the pumping pressure of a blood pump, but an increase in the number of blades will reduce the flow rate. The design of circumferential grooves at the top of the blade can increase the pumping pressure to a certain extent, with little impact on the hemolysis performance. The impeller structure is optimized based on the estimated hemolysis of each impeller model blood pump. It could be seen that when the pump blood pressure and flow rate were reached, the optimized impeller speed was reduced by 11.4%, and the estimated hemolysis value was reduced by 10.5%. CONCLUSION: In this paper, the rotor impeller structure of the blood pump was optimized to improve the hydraulic and hemolytic performance effectively, which can provide a reference for the related research of the axial flow blood pump using hydraulic suspension.


Subject(s)
Heart-Assist Devices , Humans , Equipment Design , Hemolysis , Computer Simulation , Blood Pressure
2.
Transfus Clin Biol ; 31(1): 13-18, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007216

ABSTRACT

PURPOSES: Red blood cells (RBCs) are often subject to vibration during processing, transfusion, and transport. Further research is necessary to understand the effects of vibration on human RBCs and to reduce experimental deviations caused by device vibration. METHODS: Flow cytometry was used in this study to observe the cytokine expression of IgG and IgA and deformation of human red blood cells affected by the vibration of a vortex mixer with varying frequency (750 rpm and 1500 rpm), duration (5 min and 10 min), and container volume (96 well plate and 48 well plate). RESULTS: The size of RBCs in duration of 10 min is obviously smaller than the duration of 5 min. The 10-minute duration led to visibly smaller RBC sizes compared to the 5-minute duration. There was little effect on the size of RBCs in the 10-minute groups from differences in frequency and container volume. However, decreased RBC size can be observed in the 5-minute groups, where frequency is increased or container volume is decreased. Echinocytes were present in photomicrographs of all 10-minute groups, but microstructure of the RBCs was not impacted by vortex mixer vibration. The elevated frequency or reduced container volume results in an increased cytokine expression of IgG within the 5-minute groupings. CONCLUSION: It can be inferred that vibration must not be overlooked due to its potential impact on the shape and cytokine expression of RBCs. Hence, the inclusion of vibration must be taken into consideration in experiments and devices pertaining to RBCs.


Subject(s)
Erythrocytes , Vibration , Humans , Blood Preservation , Cytokines , Immunoglobulin G
3.
J Cardiovasc Magn Reson ; 25(1): 41, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475047

ABSTRACT

PURPOSE: To investigate the feasibility and clinical utility of a compressed-sensing-accelerated subtractionless whole-body MRA (CS-WBMRA) protocol with only contrast injection for suspected arterial diseases, by comparison to conventional dual-pass subtraction-based whole-body MRA (conventional-WBMRA) and available computed tomography angiography (CTA). MATERIALS AND METHODS: This prospective study assessed 86 patients (mean age, 56 years ± 16.4 [standard deviation]; 25 women) with suspected arterial diseases from May 2021 to December 2022, who underwent CS-WBMRA (n = 48, mean age, 55.9 years ± 16.4 [standard deviation]; 25 women) and conventional-WBMRA (n = 38, mean age, 48 years ± 17.4 [standard deviation]; 20 women) on a 3.0 T MRI after random group assignment based on the chronological order of enrolment. Of all enrolled patients administered the CS-WBMRA protocol, 35% (17/48) underwent CTA as required by clinical demands. Two experienced radiologists independently scored the qualitative image quality and venous enhancement contamination. Quantitative image assessment was carried out by determining and comparing the apparent signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of four representative arterial segments. The total examination time and contrast-dose were also recorded. The independent samples t-test or the Wilcoxon rank sum test was used for statistical analysis. RESULTS: The overall scores of CS-WBMRA outperformed those of conventional-WMBRA (3.40 ± 0.60 vs 3.22 ± 0.55, P < 0.001). In total, 1776 and 1406 arterial segments in the CS-WBMRA and conventional-WBMRA group were evaluated. Qualitative image scores for 7 (of 15) vessel segments in the CS-WMBRA group had statistically significantly increased values compared to those of the conventional-WBMRA groups (P < 0.05). Scores from the other 8 segments showed similar image quality (P > 0.05) between the two protocols. In the quantitative analysis, overall apparent SNRs were significantly higher in the conventional-WBMRA group than in the CS-WBMRA group (214.98 ± 136.05 vs 164.90 ± 118.05; P < 0.001), while overall apparent CNRs were not significantly different in these two groups (CS vs conventional: 107.13 ± 72.323 vs 161.24 ± 118.64; P > 0.05). In the CS-WBMRA group, 7 of 1776 (0.4%) vessel segments were contaminated severely by venous enhancement, while in the convention-WBMRA group, 317 of 1406 (23%) were rated as severe contamination. In the CS-WBMRA group, total examination and reconstruction times were only 7 min and 10 min, respectively, vs 20 min and < 30 s for the conventional WBMRA group, respectively. The contrast agent dose used in the CS-WBMRA protocol was reduced by half compared to conventional-WBMRA protocol (18.7 ± 3.5 ml vs 37.2 ± 5.4 ml, P = 0.008). CONCLUSION: The CS-WBMRA protocol provides excellent image quality and sufficient diagnostic accuracy for whole-body arterial disease, with relatively faster workflow and half-dose reduction of contrast agent, which has greater potential in clinical practice compared with conventional-WBMRA.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Female , Middle Aged , Feasibility Studies , Prospective Studies , Predictive Value of Tests , Magnetic Resonance Angiography/methods
4.
Front Physiol ; 14: 1174188, 2023.
Article in English | MEDLINE | ID: mdl-37123255

ABSTRACT

For blood pumps with a rotating vane-structure, hemolysis values are estimated using a stress-based power-law model. It has been reported that this method does not consider the red blood cell (RBC) membrane's shear resistance, leading to inaccurate estimation of the hemolysis value. The focus of this study was to propose a novel hemolysis model which can more accurately predict the hemolysis value when designing the axial flow blood pump. The movement behavior of a single RBC in the shear flow field was simulated at the mesoscale. The critical value of shear stress for physiological injury of RBCs was determined. According to the critical value, the equivalent treatment of RBC aging was studied. A novel hemolysis model was established considering the RBC's aging and the hemolysis' initial value. The model's validity was verified under the experimental conditions of shear stress loading and the conditions of the shear flow field of the blood pump. The results showed that compared with other hemolysis models for estimating the hemolysis value of blood pumps, the novel hemolysis model proposed in this paper could effectively reduce the estimation error of the hemolysis value and provide a reference for the optimal design of rotary vane blood pumps.

5.
Quant Imaging Med Surg ; 12(1): 592-607, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34993104

ABSTRACT

BACKGROUND: We aimed to compare the performance of three contrast-enhanced T1-weighted three-dimensional (3D) magnetic resonance (MR) sequences to detect brain tumors at 3 Tesla. The three sequences were: (I) delay alternating with nutation for tailored excitation sampling perfection with application-optimized contrasts using different flip angle evolution (DANTE-SPACE), (II) pointwise encoding time reduction with radial acquisition (PETRA), and (III) magnetization-prepared rapid acquisition with gradient echo (MPRAGE). METHODS: This study involved 77 consecutive patients, including 34 patients with known primary brain tumors and 43 patients suspected of intracranial metastases. All patients underwent each of the three sequences with comparable spatial resolution and acquisition time post-injection. Signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM), contrast-to-noise ratios (CNRs) for lesion/GM, lesion/WM, and GM/WM were quantitatively compared. Two radiologists determined the total number of enhancing lesions by consensus. Intraclass correlation coefficients (ICCs) between the two radiologists for metastases presence, qualitative ratings for image quality, and acoustic noise level of each sequence were assessed. RESULTS: Among the three sequences, SNRs and CNRs between lesions and surrounding parenchyma were highest using DANTE-SPACE, but CNRWM/GM was the lowest with DANTE-SPACE. SNRs for PETRA images were significantly higher than those for MPRAGE (P<0.001). CNRs between lesions and surrounding parenchyma were similar for PETRA and MPRAGE (P>0.05). Significantly more brain metastases were detected with DANTE-SPACE (n=94) compared with MPRAGE (n=71) and PETRA (n=72). The ICCs were 0.964 for MPRAGE, 0.975 for PETRA, and 0.973 for DANTE-SPACE. Qualitative scores for lesion imaging using DANTE-SPACE were significantly higher than those obtained with PETRA and MPRAGE (P=0.002 and P=0.004, respectively). The acoustic noise level for PETRA (64.45 dB) was significantly lower than that for MPRAGE (78.27 dB, P<0.01) and DANTE-SPACE (80.18 dB, P<0.01). CONCLUSIONS: PETRA achieves comparable detection of brain tumors with MPRAGE and is preferred for depicting osseous metastases and meningeal enhancement. DANTE-SPACE with blood vessel suppression showed improved detection of cerebral metastases compared with MPRAGE and PETRA, which could be helpful for the differential diagnosis of tumors.

6.
Int J Artif Organs ; 45(4): 360-370, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35000480

ABSTRACT

Aiming at insufficient suspension force on the impeller when the hydraulic suspension axial flow blood pump is start at low speed, the impeller suspension stability is poor, and can't quickly enter the suspended working state. By establishing the mathematical model of the suspension force on the impeller, then the influence of the circumferential groove depth of the impeller on the suspension force is analyzed, and the annular groove depth on the impeller blade in the direction of fluid inlet and outlet was determined as (0.26, 0.02 mm). When the blood pump starts, there is an eccentricity between the impeller and the pump tube, the relationship between the suspension force and the speed of the impeller under different eccentricities is analyzed. Combined with the prototype experiment, the circumferential annular grooving design of the impeller can make the blood pump rotate at about 3500 rpm into the suspension state, when the impeller is at 8000 rpm, the impeller can basically achieve stable suspension at the eccentricity of 0.1 mm in the gravity direction, indicating that the reasonable circumferential annular grooving design of the impeller can effectively improve the suspension hydraulic force of the impeller and improve the stability of the hydraulic suspension axial flow blood pump.


Subject(s)
Amniotic Band Syndrome , Heart-Assist Devices , Equipment Design , Humans , Hydrodynamics , Infant, Newborn , Models, Theoretical
7.
Front Neurosci ; 15: 755327, 2021.
Article in English | MEDLINE | ID: mdl-34916899

ABSTRACT

Purpose: To qualitatively and quantitatively compare the image quality and diagnostic performance of turbo gradient and spin echo PROPELLER diffusion-weighted imaging (TGSE-PROPELLER-DWI) vs. readout-segmented echo-planar imaging (rs-EPI) in the evaluation of orbital tumors. Materials and Methods: A total of 43 patients with suspected orbital tumors were enrolled to perform the two DWIs with comparable spatial resolution on 3T. The overall image qualities, geometric distortions, susceptibility artifacts, and lesion conspicuities were scored by using a four-point scale (1, poor; 4, excellent). Quantitative measurements, including contrast-to-noise ratios (CNRs), apparent diffusion coefficients (ADCs), geometric distortion rates (GDRs), and lesion sizes, were calculated and compared. The two ADCs for differentiating malignant from benign orbital tumors were evaluated. Wilcoxon signed-rank test, Kappa statistic, and receiver operating characteristics (ROC) curves were used. Results: TGSE-PROPELLER-DWI performed superior in all subjective scores and quantitative GDR evaluation than rs-EPI (p < 0.001), and excellent interobserver agreement was obtained for Kappa value ranging from 0.876 to 1.000. ADC lesion of TGSE-PROPELLER-DWI was significantly higher than those of rs-EPI (p < 0.001). Mean ADC of malignant tumors was significantly lower than that of benign tumors both in two DWIs. However, the AUC for differentiating malignant and benign tumors showed no significant difference in the two DWIs (0.860 vs. 0.854, p = 0.7448). Sensitivity and specificity could achieve 92.86% and 72.73% for TGSE-PROPELLER-DWI with a cutoff value of 1.23 × 10-3 mm2/s, and 85.71% and 81.82% for rs-EPI with a cutoff value of 0.99 × 10-3 mm2/s. Conclusion: Compared with rs-EPI, TGSE-PROPELLER-DWI showed minimized geometric distortion and susceptibility artifacts significantly improved the image quality for orbital tumors and achieved comparable diagnostic performance in differentiating malignant and benign orbital tumors.

8.
Magn Reson Imaging ; 84: 76-83, 2021 12.
Article in English | MEDLINE | ID: mdl-34555457

ABSTRACT

OBJECTIVE: The complex anatomical structures of cerebellopontine angle (CPA) pose a unique challenge to diffusion weighted imaging (DWI). This study aimed to compare the clinical utility of the prototypic 2D turbo gradient- and spin echo-BLADE-DWI (TGSE-BLADE-DWI) with that of readout-segmented echo-planar DWI (RESOLVE-DWI) and single-shot echo-planar DWI (SS-EPI-DWI) to visualize CPA anatomic structures and identify CPA tumors. METHODS: A total of 8 volunteers and 36 patients with pathological CPA tumors were enrolled to perform the three DWI sequences at 3 T. Scan time of TGSE-BLADE-DWI, RESOLVE-DWI and SS-EPI-DWI was 5 min 51 s, 5 min 15 s and 1 min 22 s, respectively. Subjective analysis, including visualization of anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality of the three DWI sequences were scored and assessed. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of CPA tumors were measured and compared. RESULTS: A total of 39 lesions were identified, TGSE-BLADE-DWI detected all of them, RESOLVE-DWI 36 and SS-EPI-DWI 27. Significant differences were found in all the subjective parameters among the three DWI sequences (all p < 0.001). TGSE-BLADE-DWI was significantly better than RESOLVE-DWI in visualization of CPA anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality (all p < 0.01), and RESOLVE-DWI showed significantly superior performance than SS-EPI-DWI in all parameters (all p < 0.001). CNRs and ADCs were not significantly different among the three DWI sequences (p = 0.355, p = 0.590, respectively). No significant differences were detected between TGSE-BLADE-DWI SNR and RESOLVE-DWI SNR (p = 0.058), or TGSE-BLADE-DWI SNR and SS-EPI-DWI SNR (p = 0.155). CONCLUSION: Compared with RESOLVE-DWI and SS-EPI-DWI, TGSE-BLADE-DWI minimized geometric distortions and ghosting artifacts and demonstrated an improved ability for depicting CPA tumors with better lesion conspicuity. SUMMARY: Geometric distortions and ghosting artifacts are found at bone-air interfaces using conventional diffusion-weighted imaging (DWI), which is a challenge for imaging cerebellopontine angle (CPA) tumors. Our study validated that geometric distortions and ghosting artifacts were not present on 2D turbo gradient- and spin-echo-BLADE-DWI scans, making this technique useful for visualizing CPA anatomic structures and diagnosing CPA tumors.


Subject(s)
Neuroma, Acoustic , Artifacts , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Neuroma, Acoustic/diagnostic imaging , Reproducibility of Results
9.
Appl Bionics Biomech ; 2020: 8874247, 2020.
Article in English | MEDLINE | ID: mdl-33204305

ABSTRACT

Researches on the principle of human red blood cell's (RBC) injuring and judgment basis play an important role in decreasing the hemolysis in a blood pump. In the current study, the judgment of hemolysis in a blood pump study was through some experiment data and empirical formula. The paper forms a criterion of RBC's mechanical injury in the aspect of RBC's free energy. First, the paper introduces the nonlinear spring network model of RBC in the frame of immersed boundary-lattice Boltzmann method (IB-LBM). Then, the shape, free energy, and time needed for erythrocyte to be shorn in different shear flow and impacted in different impact flow are simulated. Combining existing research on RBC's threshold limit for hemolysis in shear and impact flow with this paper's, the RBC's free energy of the threshold limit for hemolysis is found to be 3.46 × 10-15 J. The threshold impact velocity of RBC for hemolysis is 8.68 m/s. The threshold value of RBC can be used for judgment of RBC's damage when the RBC is having a complicated flow of blood pumps such as coupling effect of shear and impact flow. According to the change law of RBC's free energy in the process of being shorn and impacted, this paper proposed a judging criterion for hemolysis when the RBC is under the coupling effect of shear and impact based on the increased free energy of RBC.

10.
Curr Med Sci ; 40(1): 192-198, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32166683

ABSTRACT

MR pulmonary angiography (MRPA) combined with indirect MR venography (MRV) was attempted by using 3D contrast-enhanced MR volume interpolated body examination (VIBE) sequence. Agreement rate for deep venous thrombosis (DVT) detection between MRV and duplex sonography (DUS) was evaluated; the potential of this method for venous thromoembolism (VTE) was also investigated. Thirty-four patients with DUS-identified DVT were enrolled in this study. MRI was performed after a single administration of Gadopentetate dimeglumine. Fat-suppressed 3D VIBE was applied for visualizing pulmonary arteries, abdominal veins, pelvic and leg veins, ranging from lung apex to ankle level. Two radiologists observed the MR images in consensus, recorded the location and number of emboli. MRV images were assessed based on per-vein segment. The agreement rate between MRV and DUS for venous segment-to-segment comparison was analyzed by Wilcoxon rank sum test. All the patients were diagnosed as having DVT by MRV. MRV detected 55 more venous segments with thrombi than DUS based on per-vein segment analysis. Twenty-three patients with pulmonary embolism (PE) were detected by MRPA. Twenty-one patients underwent both pulmonary CT angiography and MRPA, and consistency for PE detection was 100%. Total examination time of the combined MR protocol was 7 min for each patient. The contrast-enhanced VIBE sequence proves to be a feasible and reliable method for VTE diagnosis in one-stop MR scanning procedure, and contrast-enhanced VIBE performs better to depict DVT than DUS on per-vein segment basis.


Subject(s)
Contrast Media/administration & dosage , Gadolinium DTPA/administration & dosage , Magnetic Resonance Angiography/methods , Phlebography/methods , Pulmonary Embolism/diagnostic imaging , Venous Thrombosis/diagnostic imaging , Adolescent , Adult , Aged , Feasibility Studies , Female , Humans , Male , Middle Aged , Multimodal Imaging , Observer Variation , Physical Examination , Radiographic Image Interpretation, Computer-Assisted , Sensitivity and Specificity , Ultrasonography, Doppler, Duplex , Young Adult
11.
Curr Med Sci ; 40(6): 1057-1066, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33428133

ABSTRACT

Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson's disease (PD) with mild cognitive impairment (MCI) is a focus in resting-state functional MRI (rs-fMRI) studies. This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels: functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis. Using group independent component analysis (ICA) on rs-fMRI data acquired from 30 participants (14 healthy controls and 16 PD patients with MCI), 16 RSNs were identified, and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups. Compared to controls, patients with PD showed decreased functional connectivity within putamen network, thalamus network, cerebellar network, attention network, and self-referential network, and increased functional connectivity within execution network. Globally disturbed, mostly increased functional connectivity of FNC was observed in PD group, and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs. Cerebellar network showed decreased functional connectivity with caudate network, insular network, and self-referential network. In general, decreased functional connectivity within RSNs and globally disturbed, mostly increased functional connectivity of FNC may be characteristics of PD. Increased functional connectivity within execution network may be an early marker of PD. The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN, contributing to the understanding of the neural mechanism of PD.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Parkinson Disease/psychology , Aged , Aged, 80 and over , Case-Control Studies , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Female , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Putamen/diagnostic imaging , Putamen/physiopathology , Rest/physiology , Retrospective Studies , Thalamus/diagnostic imaging , Thalamus/physiopathology
12.
Kidney Blood Press Res ; 42(4): 686-696, 2017.
Article in English | MEDLINE | ID: mdl-29145203

ABSTRACT

BACKGROUND/AIMS: Psychological complications are prevalent in patients with chronic kidney disease (CKD). This study aimed to investigate mental disorders in stage 4-5 CKD patients, to detect metabolite concentrations in the brain by proton magnetic resonance spectroscopy (1H-MRS) and to compare the effects of different dialysis therapies on mental disorders in end-stage renal disease (ESRD). METHODS: The sample population was made up of predialysis (13), hemodialysis (HD) (13), and peritoneal dialysis (PD) patients (12). We collected the baseline data of patients' age, sex, hemoglobin (Hb) and parathyroid hormone(PTH) levels. The predialysis patients served as the control group. The psychological status of the three groups was assessed using three psychological scales. 1H-MRS was used to evaluate the relative metabolite concentrations in the bilateral amygdala, hippocampus and unilateral anterior cingulated cortex (ACC). RESULTS: The psychological status was better in HD patients than in predialysis and PD patients. 1H-MRS alterations were predominantly found in the ACC. Choline-containing compounds relative to creatine (Cho/Cr), myo-inositol relative to creatine (MI/Cr) and glutamate and glutamine relative to creatine (Glx/Cr) in the ACC were higher in HD patients. 1H-MRS results were correlated with the baseline data and the scores of psychological scales. CONCLUSIONS: CKD patients showed different types of mental disorders as well as metabolite disturbances in the brain. The metabolite concentrations correlated with the psychological status which was better in HD than in predialytic and PD patients.


Subject(s)
Mental Disorders/diagnosis , Proton Magnetic Resonance Spectroscopy/methods , Renal Insufficiency, Chronic/psychology , Adult , Aged , Case-Control Studies , Gyrus Cinguli/metabolism , Humans , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/psychology , Mental Disorders/metabolism , Middle Aged , Renal Dialysis , Renal Insufficiency, Chronic/metabolism
13.
J Huazhong Univ Sci Technolog Med Sci ; 37(4): 469-474, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28786054

ABSTRACT

Present work was designed to quantitatively evaluate the performance of diffusion-weighted magnetic resonance imaging (DWI) in the diagnosis of the presence of metastasis in lymph nodes (LNs). Eligible studies were identified from systematical PubMed and EMBASE searches. Data were extracted. Meta-analyses were performed to generate pooled sensitivity and specificity on the basis of per-node, per-lesion and per-patient, respectively. Fourteen publications (2458 LNs, 404 lesions and 334 patients) were eligible. Per-node basis demonstrated the pooled sensitivity and specificity was 0.82 (P<0.0001) and 0.90 (P<0.0001), respectively. Per-lesion basis illustrated the pooled sensitivity and specificity was 0.73 (P=0.0036) and 0.85 (P<0.0001), respectively. Per-patient basis indicated the pooled sensitivity and specificity was 0.67 (P=0.0909) and 0.86 (P<0.0001), respectively. In conclusion, DWI has rather a negative predictive value for the diagnosis of LN metastasis presence. The difference of the mean apparent diffusion coefficients between benign and malignant LNs is not yet stable. Therefore, the DWI technique has to be further improved.


Subject(s)
Diffusion Magnetic Resonance Imaging , Lymphatic Metastasis/diagnosis , Humans , Lymph Nodes/pathology , Publication Bias , Regression Analysis , Sensitivity and Specificity
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-333468

ABSTRACT

Present work was designed to quantitatively evaluate the performance of diffusion-weighted magnetic resonance imaging (DWI) in the diagnosis of the presence of metastasis in lymph nodes (LNs).Eligible studies were identified from systematical PubMed and EMBASE searches.Data were extracted.Meta-analyses were performed to generate pooled sensitivity and specificity on the basis of per-node,per-lesion and per-patient,respectively.Fourteen publications (2458 LNs,404 lesions and 334 patients) were eligible.Per-node basis demonstrated the pooled sensitivity and specificity was 0.82 (P<0.0001) and 0.90 (P<0.0001),respectively.Per-lesion basis illustrated the pooled sensitivity and specificity was 0.73 (P=-0.0036) and 0.85 (P<0.0001),respectively.Per-patient basis indicated the pooled sensitivity and specificity was 0.67 (P=0.0909) and 0.86 (P<0.0001),respectively.In conclusion,DWI has rather a negative predictive value for the diagnosis of LN metastasis presence.The difference of the mean apparent diffusion coefficients between benign and malignant LNs is not yet stable.Therefore,the DWI technique has to be further improved.

15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 33(1): 78-82, 2016 Feb.
Article in Chinese | MEDLINE | ID: mdl-27382744

ABSTRACT

The implantable axial blood pump, driven by external electromagnet, is studied recently. It oscillats when it is running because of the elastic implanted environment and driving force disequilibrium, etc. In this paper, a model of single erythrocyte in vibrated flow field was built to simulate the deformation and force of the erythrocyte. By using the mechanical injury principle of blood in blood pump, we studied the injury of a single erythrocyte resulted from oscillating boundary flow field. The research results indicated that the shape of the erythrocyte, force and velocity field nearby, which are affected by oscillating boundary flow field, all cause injury to the erythrocyte. All the researches shown in the present paper are expected to provide theoretical foundation for lightening hemolysis by the blood pump.


Subject(s)
Assisted Circulation , Erythrocytes/cytology , Models, Cardiovascular , Prostheses and Implants , Hemolysis , Humans , Oscillometry
SELECTION OF CITATIONS
SEARCH DETAIL
...