Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Colloid Interface Sci ; 663: 761-774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38437755

ABSTRACT

As a noble metal with extremely high economic benefits, the recovery of silver ions has attracted a particular deal of attention. However, it is a challenge to recover silver ions efficiently and selectively from aqueous solutions. In this research, the novel metal-organic frameworks (MOFs) adsorbent (Zr-DPHT) is prepared for the highly efficient and selective recovery of silver ions from wastewater. Experimental findings reveal that Zr-DPHT's adsorption of Ag(I) constitutes an endothermic process, with an optimal pH of 5 and exhibits a maximum adsorption capacity of 268.3 mg·g-1. Isotherm studies show that the adsorption of Ag(I) by Zr-DPHT is mainly monolayer chemical adsorption. Kinetic studies indicate that the internal diffusion of Ag(I) in Zr-DPHT may be the rate-limiting step. The mechanism for Ag(I) adsorption on Zr-DPHT involves electrostatic interactions and chelation. In competitive adsorption, Ag(I) has the largest partition coefficient (9.64 mL·mg-1), indicating a strong interaction between Zr-DPHT and Ag(I). It is proven in the adsorption-desorption cycle experiments that Zr-DPHT has good regeneration performance. The research results indicate that Zr-DPHT can serve as a potential adsorbent for efficiently and selectively capturing Ag(I), providing a new direction for MOFs in the recycling field of precious metals.

2.
Chin J Nat Med ; 22(1): 89-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38278562

ABSTRACT

As the search for effective treatments for COVID-19 continues, the high mortality rate among critically ill patients in Intensive Care Units (ICU) presents a profound challenge. This study explores the potential benefits of traditional Chinese medicine (TCM) as a supplementary treatment for severe COVID-19. A total of 110 critically ill COVID-19 patients at the Intensive Care Unit (ICU) of Vulcan Hill Hospital between Feb., 2020, and April, 2020 (Wuhan, China) participated in this observational study. All patients received standard supportive care protocols, with a subset of 81 also receiving TCM as an adjunct treatment. Clinical characteristics during the treatment period and the clinical outcome of each patient were closely monitored and analysed. Our findings indicated that the TCM group exhibited a significantly lower mortality rate compared with the non-TCM group (16 of 81 vs 24 of 29; 0.3 vs 2.3 person/month). In the adjusted Cox proportional hazards models, TCM treatment was associated with improved survival odds (P < 0.001). Furthermore, the analysis also revealed that TCM treatment could partially mitigate inflammatory responses, as evidenced by the reduced levels of proinflammatory cytokines, and contribute to the recovery of multiple organic functions, thereby potentially increasing the survival rate of critically ill COVID-19 patients.


Subject(s)
COVID-19 , Humans , Medicine, Chinese Traditional , SARS-CoV-2 , Critical Illness , Treatment Outcome
3.
J Periodontol ; 93(12): 1951-1960, 2022 12.
Article in English | MEDLINE | ID: mdl-35150132

ABSTRACT

BACKGROUND: Immediate implant placement in the esthetic area requires comprehensive assessments with nearly 30 quantitative indexes. Most artificial intelligence (AI)-driven measurements of quantitative indexes depend on segmentation or landmark detection, which require extra labeling of images and contain possible intraclass errors. METHODS: For the initial attempt, the method was tested on sagittal root inclination measurement. This study had developed an accurate and efficient end-to-end model incorporating a convolutional neural network (CNN) based on unlabeled cone-beam computed tomography (CBCT) images for immediate implant placement diagnosis and treatment. The model took pretrained ResNeXt101 as the backbone and was constructed based on 2,920 CBCT images with corresponding angles of the tooth axis and bone axis. The performance of our CNN model was evaluated on a separate test set. RESULTS: Our model exhibited high prediction accuracy in sagittal root inclination measurements, as evidenced by the low mean average error of 2.16°, the high correlation coefficient of 0.915 to manual measurement, and the narrow 95% confidence interval shown by Bland-Altman plots. The intraclass correlation coefficient further confirmed the measurement accuracy of our model was comparable with that of junior clinicians. The model took merely 0.001 seconds for each CBCT image, making it highly efficient. To better understand the model's quality, we visualized our end-to-end CNN model through Guided Backpropagation, Grad-CAM, and Guided Grad-CAM, and confirmed its effectiveness in region recognition. CONCLUSIONS: We succeeded in taking the first step in constructing the end-to-end immediate implant placement AI tool through sagittal root inclination measurements without intermediate steps and extra labeling on images.


Subject(s)
Artificial Intelligence , Esthetics, Dental , Cone-Beam Computed Tomography/methods , Neural Networks, Computer , Tooth Root/diagnostic imaging , Image Processing, Computer-Assisted/methods
4.
BMC Infect Dis ; 20(1): 771, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33076830

ABSTRACT

BACKGROUND: COVID-19 is novel infectious disease with an evolving understanding of its epidemiology and clinical manifestations. Severe cases developed life-threatening complications, such as respiratory failure, shock, and multiple organs dysfunction. Immunocompromised patients often present atypical presentations of viral infected diseases. CASE PRESENTATION: We report newly diagnosed HIV infections in two patients with COVID-19 in China. In our two cases, both patients with elevated IL-6 received Tocilizumab treatment, but did not present obvious therapeutic effect. CONCLUSIONS: These cases highlight possible co-detection of known immunocompromised diseases such as HIV. The two cases we reported stressed the risk of misdiagnosis, especially during the pandemic of an infectious disease and the importance of extended testing even if in immune-compromised condition the immune state may be ignored.


Subject(s)
Coronavirus Infections/complications , HIV Infections/complications , Pneumonia, Viral/complications , Adult , Betacoronavirus , COVID-19 , China , Coronavirus Infections/immunology , HIV Infections/diagnosis , HIV Infections/epidemiology , HIV Infections/immunology , Humans , Immunocompromised Host , Male , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
6.
Drug Metab Rev ; 52(1): 139-156, 2020 02.
Article in English | MEDLINE | ID: mdl-32116054

ABSTRACT

There are more than 1000 species of microbes reside in the human gut, umbering∼1014 microbes. As the invisible organ of human beings, gut microbiota can usually participate in drug metabolism by producing specific enzymes, such as reductase and hydrolytic enzyme, thus affecting the efficacy, toxicity, and bioavailability of drugs. At least 30 commercially available drugs have been shown to be substrates of gut microbes-derived enzymes, and an increasing number of drugs may have the potential to contact with the distal gut with the help of improved release systems or poor solubility/permeability, more drugs are expected to be found to be metabolized through the gut flora. By collecting examples of intestinal flora participating in the metabolism of synthetic drugs and traditional Chinese medicine components, this article provides a comprehensive reference for future researchers to study drug metabolism by intestinal flora. Noticeably, the composition and quantity of intestinal flora varies among individuals, and can be affected by some drug administration (such as antibiotics) or environmental changes (acute plateau hypoxia). This seems to suggest that intestinal flora could have the potential to be a new drug target to affect the efficacy of drugs which can be metabolized by Intestinal flora. Accordingly, understanding the impact of intestinal flora on drug metabolism and clarifying the drug transformation process is of great significance for guiding rational clinical use, individualized use, toxicological evaluation, and promoting drug discovery and development.


Subject(s)
Gastrointestinal Microbiome/physiology , Pharmaceutical Preparations/metabolism , Animals , Drugs, Chinese Herbal/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Pharmacokinetics
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(6): 603-608, 2019 12 25.
Article in Chinese | MEDLINE | ID: mdl-31955533

ABSTRACT

OBJECTIVE: To investigate the effects of high-altitude hypoxic environment on the expression of pregnane X receptor (PXR) in rat liver and related mechanism. METHODS: Wistar rats were randomly divided into five groups with 8 rats in each group, the rats were exposed to high-plateau hypoxia for 0 (control group), 12, 24, 36 and 48 h, respectively. Abdominal aortic blood samples were collected for blood gas analysis. HE staining was used to observe the pathological changes of liver tissue. The expression levels of PXR mRNA in liver tissues were determined by RT-PCR. Western blot analysis was performed to determine the protein expression of PXR and protease SUG1 in liver tissues of rats. RESULTS: Compared with the control group, the blood pH of the rats decreased after 12 h of acute hypoxia. After 24 h exposed to hypoxia, SaO2 was lower than 80%, PaO2 was lower than 60 mmHg (1 mmHg=0.133 kPa); and PaCO2 increased after 48 h exposed to hypoxia (P<0.05). There was obvious edema in the central vein of the liver tissue at 12 h and 24 h after exposure to hypoxia. The liver tissue of the rats exposed to hypoxia for 36 h and 48 h showed inflammatory infiltration. The expression of PXR mRNA was significantly decreased by 63%, 96%, 86%, and 85%at 12, 24, 36 h, and 48 h after exposure to hypoxia (all P<0.05), respectively. The protein expression of PXR was significantly up-regulated by 93%and 99%after 36 h and 48 h exposure to hypoxia (all P<0.05), respectively. The protein expression of proteinase SUG1 decreased by 14%, 34%and 46%after 24, 36 and 48 h after hypoxia (all P<0.01). CONCLUSIONS: Acute hypoxia at high altitude can affect the expression of nuclear receptor PXR in rat liver, and protease SUG1 may be a regulatory factor for PXR expression in hypoxia.


Subject(s)
Altitude , Gene Expression Regulation , Hypoxia , Liver , Pregnane X Receptor , Animals , Hydrogen-Ion Concentration , Hypoxia/complications , Liver/physiology , Pregnane X Receptor/genetics , Random Allocation , Rats , Rats, Wistar , Time Factors
8.
Yao Xue Xue Bao ; 45(8): 1052-6, 2010 Aug.
Article in Chinese | MEDLINE | ID: mdl-21351595

ABSTRACT

This study is to screen 23 blank O/W type microemulsion (ME) samples, that is 15 samples from our laboratory, and 8 samples from literature; compare the conductivity-water content curve (CWCC) method and visual method in determining the critical water content during O/W type MEs' formation, to analyze the deficiency and the feasibility of visual method and to exploxe scientific meanings of CWCC method in judging the critical water content of O/W type MEs during formation. The results show that there is a significant difference between the theoretical feasible CWCC method and visual method in determining the critical water content (P<0.001), and the results judged by conductivity is higher than that by eye-based water content. Therefore, this article firmly confirmed the shortcomings of visual method and suggested that the eye-base "critical water content" may falls into continuous ME stage during O/W MEs' formation. Further more, the CWCC method has theoretical feasibility and scientific meanings in determining the critical water content of O/W type MEs during formation.


Subject(s)
Electric Conductivity , Emulsions/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...