Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 31(17): 28624-28635, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710912

ABSTRACT

In this study, using density functional theory, we calculated the band structure and photoelectric properties in a series of 12.5% B-doped (B = Ge, Sn, Ca, and Sr) CsPbI3 perovskite systems. It is found that Ge doping can improve the structural stability and is more conducive to applications under high-pressure or by applying stress via calculating the bond length, formation energy, elastic properties, and electronic local function. In addition, the optimal direction for applying stress is achieved according to the elastic properties. Furthermore, in terms of electronic properties, the reason of energy band variation and the influence of chemical bond on the structural stability of doped α-CsPbI3 are investigated. The possibility of the applications of the CsPb0.875B0.125I3 perovskite is explored based on the optical properties. Thus, the theoretical study of the CsPb0.875B0.125I3 perovskite provides novel insights into the design of next-generation photoelectric and photovoltaic materials.

2.
Phys Chem Chem Phys ; 25(13): 9592-9598, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36942656

ABSTRACT

To broaden the application of cesium lead halide perovskites, doping technology has been widely proposed. In this study, we calculated a 12.5% concentration of a Sr-doped CsPbX3 (X = Cl, Br, or I) perovskite via density functional theory. The results showed that the bandgap energy of the perovskite increased by 0.2-0.3 eV. The high symmetry points of the energy band changed from R to Γ after Sr doping because the Sr doping affected the initial distribution of atomic orbital hybridization. In addition, optical absorption spectra after doping showed an obvious blueshift, whereas the absorption coefficient of CsPb0.875Sr0.125X3 had the same magnitude as undoped CsPbX3. Moreover, the effective masses of electrons and holes changed within a small range (0.01-0.03 m0) after Sr doping. According to the findings of this study, the CsPb0.875Sr0.125X3 perovskite is expected to become an ideal candidate material for designing photovoltaic and photoelectric devices.

3.
Nanomaterials (Basel) ; 12(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080019

ABSTRACT

Lead-free perovskites of Cs3Sb2X9 (X = Cl, Br, or I) have attracted wide attention owing to their low toxicity. High pressure is an effective and reversible method to tune bandgap without changing the chemical composition. Here, the structural and photoelectric properties of Cs3Sb2X9 under high pressure were theoretically studied by using the density functional theory. The results showed that the ideal bandgap for Cs3Sb2X9 can be achieved by applying high pressure. Moreover, it was found that the change of the bandgap is caused by the shrinkage of the Sb-X long bond in the [Sb2X9]3- polyhedra. Partial density of states indicated that Sb-5s and X-p orbitals contribute to the top of the valence band, while Sb-5p and X-p orbitals dominate the bottom of the conduction band. Moreover, the band structure and density of states showed significant metallicity at 38.75, 24.05 GPa for Cs3Sb2Br9 and Cs3Sb2I9, respectively. Moreover, the absorption spectra showed the absorption edge redshifted, and the absorption coefficient of the Cs3Sb2X9 increased under high pressure. According to our calculated results, the narrow bandgap and enhanced absorption ability under high pressure provide a new idea for the design of the photovoltaic and photoelectric devices.

4.
Phys Chem Chem Phys ; 24(9): 5448-5454, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35171170

ABSTRACT

Based on density functional theory and following first-principles methods, this paper investigated the electronic structures, densities of states, effective masses of electrons and holes, and optical properties of CsGeX3 (X = I, Br or Cl) perovskites under triaxial strains of -4% to 4%. The calculated results show that the tuning range of the bandgaps of the CsGeI3, CsGeBr3, and CsGeCl3 perovskites are 1.16 eV, 1.64 eV, and 1.63 eV, respectively. This result shows that the bandgap of the CsGeX3 perovskite is tuned over the entire visible spectrum by applying strain. Also, it is found that the change of the bandgap is caused by the change of the Ge-X long bond. Besides, the optimal bandgaps of CsGeI3 and CsGeBr3 can be achieved by applying compressive strains, providing theoretical support for adjusting the bandgaps of CsGeX3 perovskites. The effective masses of electrons and holes of CsGeX3 perovskites decrease gradually with the strains changing from 4% to -4%, which is conducive to the transmission of electrons and holes. In addition, the optical properties of CsGeX3 perovskites change from redshifted to blueshifted under different strains.

5.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685153

ABSTRACT

Low-toxicity, air-stable cesium bismuth iodide Cs3Bi2X9 (X = I, Br, and Cl) perovskites are gaining substantial attention owing to their excellent potential in photoelectric and photovoltaic applications. In this work, the lattice constants, band structures, density of states, and optical properties of the Cs3Bi2X9 under high pressure perovskites are theoretically studied using the density functional theory. The calculated results show that the changes in the bandgap of the zero-dimensional Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites are 3.05, 1.95, and 2.39 eV under a pressure change from 0 to 40 GPa, respectively. Furthermore, it was found that the optimal bandgaps of the Shockley-Queisser theory for the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites can be reached at 2-3, 21-26, and 25-29 GPa, respectively. The Cs3Bi2I9 perovskite was found to transform from a semiconductor into a metal at a pressure of 17.3 GPa. The lattice constants, unit-cell volume, and bandgaps of the Cs3Bi2X9 perovskites exhibit a strong dependence on dimension. Additionally, the Cs3Bi2X9 perovskites have large absorption coefficients in the visible region, and their absorption coefficients undergo a redshift with increasing pressure. The theoretical calculation results obtained in this work strengthen the fundamental understanding of the structures and bandgaps of Cs3Bi2X9 perovskites at high pressures, providing a theoretical support for the design of materials under high pressure.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443949

ABSTRACT

Ultrathin inorganic halogenated perovskites have attracted attention owing to their excellent photoelectric properties. In this work, we designed two types of Ruddlesden-Popper hybrid perovskites, Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, and studied their band structures and band gaps as a function of the number of layers (n = 1-5). The calculation results show that Csn+1SnnBr3n+1 has a direct bandgap while the bandgap of CsnSnn+1Br3n+2 can be altered from indirect to direct, induced by the 5p-Sn state. As the layers increased from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. In addition, the optical absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was blue-shifted as the structure changed from bulk to nanolayer. Compared with that of Csn+1SnnBr3n+1, the optical absorption of CsnSnn+1Br3n+2 was sensitive to the layers along the z direction, which exhibited anisotropy induced by the SnBr2-terminated surface.

SELECTION OF CITATIONS
SEARCH DETAIL