Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 11: 1343123, 2024.
Article in English | MEDLINE | ID: mdl-38380429

ABSTRACT

Introduction: Leaf coloration in Disanthus cercidifolius var. longipes results from the interplay of various pigments undergoing complex catalytic reactions. Methods: We aimed to elucidate the mechanisms of pigment biosynthesis affecting leaf color transition in D. cercidifolius var. longipes by analyzing variations in pigment accumulation and levels of gene expression. Results: We identified 468, 577, and 215 differential metabolites in green leaves (GL), gradual-color-changing leaves (GCCL), and red leaves (RL), respectively, with 94 metabolites shared across all comparisons. Metabolite accumulation patterns were similar among GL, GCCL, and RL, with flavonoids being the main differential metabolites. Delphinidin, malvidin, and petunidin derivatives were mostly accumulated in GCCL, whereas cyanidin, pelargonidin, and peonidin derivatives accumulated in RL. Transcriptome sequencing was used to identify differentially expressed genes. The expression of anthocyanin biosynthetic pathway genes was associated with anthocyanin accumulation patterns. Discussion: Our findings reveal that the content of delphinidin, malvidin, petunidin, and carotenoids collectively determines the gradual transition of leaf color from green in spring and summer to green, purple, and orange-yellow in early autumn, whereas the content of cyanidin, peonidin, pelargonidin, and carotenoids together causes the autumnal transition to red or orange-red colors as leaves of D. cercidifolius var. longipes age.

2.
PeerJ ; 11: e15484, 2023.
Article in English | MEDLINE | ID: mdl-37304883

ABSTRACT

Semiliquidambar cathayensis is widely used in traditional Chinese medicine owing its high concentrations of polyphenol, triterpenoidic acid, and flavonoids. This study aimed to explore the impact of geographical origin and tissue type on the contents of chemical compounds of S. cathayensis, as determined by colorimetric and chromatographic methods. Therefore, we quantitively evaluated chemical compounds found in the tissues of various organs of plants collected in six different regions. Overall, we found that geographical origin affected the content of medicinal compounds in S. cathayensis leaves, with plants from Jingzhou county showing the best therapeutic potential. However, no specific correlation was observed with latitude. It is noteworthy that the amount of paeoniflorin and other compounds can be used as biomarkers of geographical origin and tissue type. Most medicinal compounds accumulated mainly in the leaves, whereas ursolic and oleanolic acids accumulated in the roots. These results show that the comprehensive medicinal value of the leaves of S. cathayensis in Jingzhou county is the highest, but the root should be selected first to collect oleanolic acid and ursolic acid.


Subject(s)
Hamamelidaceae , Triterpenes , Histocompatibility Testing , Colorimetry , Flavonoids , Geography
3.
Mol Biol Rep ; 49(6): 5585-5593, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35543829

ABSTRACT

BACKGROUND: Semiliquidambar cathayensis is a traditional medicinal plant and endemic species in China. Its roots, branches, leaves, bark, and nectar are known to have therapeutic effects against rheumatoid arthritis, lumbar muscle strain, and several other diseases. However, limited knowledge regarding the molecular properties of S. cathayensis highlights the need for further research in order to elucidate the underlying pathways governing the synthesis of its active ingredients and regulation of its accumulation processes. METHODS: We conducted transcriptome sequencing of the leaf, stem and root epidermises, and stem and root xylems of S. cathayensis with three biological replicates. Moreover, candidate genes involved in terpenoid biosynthesis, such as IDI, FPPS, DXR, SQS, GPPS, and HMGR were selected for quantitative real-time PCR analysis. RESULTS: We identified 88,582 unigenes. Among which, 36,144 unigenes were annotated to the nr protein database, 21,981 to the Gene Ontology database, 11,565 to the Clusters of Orthologous Groups database, 24,209 to the Pfam database, 21,685 to the SWISS-PROT database, and 12,753 to the Kyoto Encyclopedia of Genes and Genomes (KEGG), with 5072 unigenes common to all six databases. Of those annotated using the KEGG database, 187 unigenes were related to the terpenoid metabolism pathway, and expression analysis of the related genes indicated that the mevalonate and methylerythritol 4-phosphate pathways play different roles in terpenoid biosynthesis in different tissues of S. cathayensis. CONCLUSIONS: These findings greatly expand gene resources of S. cathayensis and provide basic data for the study of the biosynthetic pathways and molecular mechanisms of terpenoids.


Subject(s)
Hamamelidaceae , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Hamamelidaceae/genetics , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/metabolism , Terpenes/metabolism , Transcriptome/genetics
4.
Ecotoxicol Environ Saf ; 225: 112815, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34562788

ABSTRACT

The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment.


Subject(s)
Lactuca , Soil , Animals , Anti-Bacterial Agents , Drug Resistance, Microbial , Manure , Swine
5.
Opt Express ; 28(26): 38638-38666, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379430

ABSTRACT

The directional polarimetric camera (DPC) is a remote-sensing instrument for the characterization of atmospheric aerosols and clouds by simultaneously conducting spectral, angular, and polarimetric measurements. Polarization measurement accuracy is an important index to evaluate the performance of the DPC and mainly related to the calibration accuracy of instrumental parameters. In this paper, firstly, the relationship between the polarization measurement accuracy of DPC and the parameter calibration errors caused by the nonideality of the components of DPC are analyzed, and the maximum polarization measurement error of DPC in the central field of view and edge field of view after initial calibration is evaluated respectively. Secondly, on the basis of the radiometric calibration of the DPC onboard the GaoFen-5 satellite in an early companion paper [Opt. Express2813187 (2020)10.1364/OE.391078], a series of simple and practical methods are proposed to improve the calibration accuracy of the parameters-the diattenuation of the optics, absolute azimuth angle, and relative transmission corresponding to each pixel, thereby improving the polarization measurement accuracy of DPC. The calibration results show that, compared with the original methods, the accuracy of the diattenuation of the optics, relative azimuth angle, and relative transmission of three polarized channels obtained with the improved methods are improved from ±1%, 0.1 degree and ±2% to ±0.4%, 0.05 degree and ±0.2%, respectively. Finally, two verification experiments based on a non-polarized radiation source and a polarizing system were carried out in the laboratory respectively to verify the improvement of the parameters modified by the proposed methods on the polarization measurement accuracy of the DPC to be boarding the GaoFen-5 (02) satellite. The experimental results show that when the corrected parameters were employed, the average error in measuring the degree of linear polarization of non-polarized light source for all pixels in the three polarized bands and the maximum deviation of the degree of linear polarization between the values set by the polarizing system and the values measured by the DPC at several different field of view angles for each polarized spectral band are obviously reduced. Both the mean absolute errors and the root mean square errors of the degree of linear polarization obtained with the corrected parameters are much lower than those obtained with the original parameters. All of these prove the effectiveness of the proposed methods.

6.
Opt Express ; 28(9): 13187-13215, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403798

ABSTRACT

The directional polarimetric camera (DPC), developed by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, is a satellite sensor used to observe the polarization and directionality of the earth's reflectance. It acquires the two-dimensional image of the earth with a large field of view (118.74°) and a high spatial resolution (3.3 km) in 8 spectral bands. The first DPC was successfully launched onboard the GaoFen-5 satellite in May 2018, subject to the Chinese high-resolution earth observation program. In this paper, a set of systematic and complete pre-flight calibrations of the DPC are proposed to ensure the effective characterization for in-flight calibration, so as to ensure the accuracy of DPC measured radiation polarization data and the reliability of inversion results. Since the geometric calibration method of the DPC has been presented in an early companion paper [Appl. Opt. 59 226 (2020)], this paper will not introduce it in detail. Instead, the geometric calibration results of each spectral band together with a discussion on the origin of differences between spectral bands are analyzed, and the error analysis of the method is conducted. The results of the DPC geometric calibration is that the residuals of all spectral bands are less than 0.1 pixel. For radiometric calibration, the radiometric models of non-polarized bands and polarized bands are derived in detail, respectively, and the specific calibration methods with error analysis, equipment, and main results with their related accuracies for each parameter of the radiometric models are described. To verify the accuracy of calibration parameters, a series of polarization detection accuracy verification experiments based on a non-polarized radiation source, a polarizing system, and a natural scene were carried out. The experimental results show that the maximum deviation of degree of polarization between the set values of the polarizing system and measured values of the DPC at the corresponding positions of four field of view angles of 0, 15, 30, and 45 degrees of each polarized spectral band is 0.009, 0.004, and 0.003, respectively. The average error in measuring the degree of polarization of a non-polarized light source by all pixels in the three polarized bands is 0.0043, 0.0046, and 0.0037, respectively. And the relative deviations of each field of view are within 0.020 when the DPC and CE318N simultaneously measure the DoLP of sky. All of these prove the effectiveness of the pre-flight calibration.

7.
Appl Opt ; 59(1): 226-233, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32225299

ABSTRACT

The directional polarimetric camera (DPC) is a polarization sensor with ultra-wide-angle and low-distortion imaging characteristics. Geometric calibration is usually the first essential step before remote sensing satellites are launched. In this paper, a geometric calibration method based on a two-dimensional turntable and a rotation matrix with high precision, simple operation, and wide application range is proposed for the directional polarimetric camera. Instead of precisely adjusting the position of the sensor on the turntable, the method effectively eliminates the errors caused by the mechanical axis of the turntable and the optical axis of the sensor not being adjusted to the same direction through the rotation transformation of the coordinate system. The geometric calibration experiments of the directional polarimetric camera were carried out with the method of Chen et al. [Optik121, 486 (2010)10.1016/j.ijleo.2008.08.004OTIKAJ0030-4026] and the proposed method. The experimental results showed the calibration residual of the proposed method was less than 0.1 pixel while Chen's method was 0.3 pixel. The mean reprojection error and root mean square error of the proposed method were reduced to 0.06352 pixel and 0.06961 pixel, respectively. The geometric calibration parameters obtained by the proposed method were used for geometric correction of the in-orbit images of the DPC, and the results also prove the effectiveness and superiority of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...