Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120510, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34689093

ABSTRACT

A novel hydrazone-based fluorescent probe (E)-3-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4H-chromen-4-one (BTC) has been rationally designed and synthesized. BTC can subsequently detect Ga3+ and PPi ions through the absorption and emission off-on-off response with high specificity. Importantly, fluorescent probe BTC can well discriminate Ga3+ from Al3+ and In3+. The association constant (K) was calculated as 2.06 × 104M-1, and the limit of detection (LOD) was calculated as 4.88 × 10-2µM. Competitive binding studies also illustrated good results of the probe BTC towards Ga3+. Job's plot and HRMS results substantiated the 1:1 stoichiometry between BTC and Ga3+ ion. The interaction binding mode of BTC with Ga3+ was proposed by HRMS, 1H NMR spectral titration, UV-vis absorption and fluorescence spectral measurements. The combination of the restraint of the photo-induced electron transfer (PET) process and the chelation enhanced fluorescence (CHEF) process is responsible for the fluorescence enhancement of this probe. The in situ chelated BTC-Ga3+ could further monitor pyrophosphate ion (PPi) by demetallization process with quenching fluorescence emission. Additionally, the BTC and BTC-Ga3+ showed good cell permeability and could detect Ga3+ and PPi ions in onioninner epidermal cells, respectively.


Subject(s)
Diphosphates , Hydrazones , Fluorescent Dyes , Limit of Detection , Spectrometry, Fluorescence
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119824, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33901944

ABSTRACT

A simple probe BHN based on naphthol and benzothiazole is reported for detecting of arginine (Arg) and lysine (Lys) with high selectivity and sensitivity. The BHN in aqueous solution upon reacting with Arg or Lys induced a visible color change from colorless to yellow. The probe BHN can also be employed for fluorescence turn-on sensing of Arg and Lys with the limits of detection (LOD) of 5.20 × 10-2 µM and 3.69 × 10-2 µM, respectively. The naked eye colorimetric and fluorimetric detecting is lack of sensitive to other common amino acids including Gly, Ala, Ser, Pro, Val, Thr, Cys, Leu, Ile, Asn, Asp, Glu, Gln, Met, His, and Phe. The sensing mechanism has been proposed by pH investigation and 1H NMR spectra.


Subject(s)
Arginine , Lysine , Amino Acid Sequence , Hydrazones , Peptide Fragments , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL