Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(9): 9251-9258, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30746929

ABSTRACT

The insufficient electron injection constitutes the major obstacle to achieving high-performance inverted organic light-emitting diodes (OLEDs). Here, a facile electron-injection architecture featuring a silver nanoparticle (AgNPs) interlayer-modified sol-gel-derived transparent zinc oxide (ZnO) ultrathin film is proposed and demonstrated. The optimized external quantum efficiencies of the developed inverted fluorescent and phosphorescent OLEDs capitalized on our proposed electron-injection structure reached 4.0 and 21.2% at a current density of 20 mA cm-2 and increased by a factor of 1.90 and 2.86 relative to a reference device without the AgNP interlayer, while simultaneously reducing the operational voltage and substantially ameliorating the device efficiency. Detailed analyses reveal that the local surface plasmon resonance emanated from AgNPs plays three meaningful roles simultaneously: suppressing the surface plasmon polariton mode loss, aiding in energy-level alignments, and inducing and reinforcing the local exciton-plasmon coupling electric field. Among these interesting and multifunctional roles, the enhanced local exciton-plasmon coupling electric field dominates the electron injection enhancement and substantial increases the device efficiency. Additionally, the light-scattering effect also helps in recovering the trapped light energy flux and thus improves the device efficiency. The proposed approach and findings provide an alternative path to fabricate high-performance inverted OLEDs and other related organic electronic or optoelectronic devices.

2.
ACS Appl Mater Interfaces ; 9(3): 2767-2775, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28050901

ABSTRACT

Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W1-, which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

3.
ACS Nano ; 10(1): 1625-32, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26687488

ABSTRACT

Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

4.
ACS Nano ; 9(7): 7553-62, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26143652

ABSTRACT

Enhancing light outcoupling in flexible organic light-emitting diodes (FOLEDs) is an important task for increasing their efficiencies for display and lighting applications. Here, a strategy for an angularly and spectrally independent boost in light outcoupling of FOLEDs is demonstrated by using plastic substrates with a low refractive index, consisting of a bioinspired optical coupling layer and a transparent conductive electrode composed of a silver network. The good transmittance to full-color emission (>94% over the whole visible wavelength range), ultralow sheet resistance to carrier injection (<5 Ω sq(-1)), and high tolerance to mechanical bending of the ameliorated plastic substrates synergistically optimize the device performance of FOLEDs. The maximum power efficiencies reach 47, 93, 56, and 52 lm W(-1) for red, green, blue, and white emissions, which are competitive with similarly structured OLEDs fabricated on traditional indium-tin-oxide (ITO) glass. This paradigm for light outcoupling enhancement in ITO-free FOLEDs offers additional features and design freedoms for highly efficient flexible optoelectronics in large-scale and low-cost manufacturing without the need for a high-refractive-index plastic substrate.

5.
ACS Nano ; 8(12): 12796-805, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25470615

ABSTRACT

Because of their mechanical flexibility, organic light-emitting diodes (OLEDs) hold great promise as a leading technology for display and lighting applications in wearable electronics. The development of flexible OLEDs requires high-quality transparent conductive electrodes with superior bendability and roll-to-roll manufacturing compatibility to replace indium tin oxide (ITO) anodes. Here, we present a flexible transparent conductor on plastic with embedded silver networks which is used to achieve flexible, highly power-efficient large-area green and white OLEDs. By combining an improved outcoupling structure for simultaneously extracting light in waveguide and substrate modes and reducing the surface plasmonic losses, flexible white OLEDs exhibit a power efficiency of 106 lm W(-1) at 1000 cd m(-2) with angular color stability, which is significantly higher than all other reports of flexible white OLEDs. These results represent an exciting step toward the realization of ITO-free, high-efficiency OLEDs for use in a wide variety of high-performance flexible applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...