Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Immunol Methods ; : 113698, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823574

ABSTRACT

There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26.COV2·S, Johnson and Johnson), or recombinant baculovirus-expressed spike protein in a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). No subjects had a history of clinical SARS-CoV-2 infection, and sera were screened with confirmation that there were no nucleocapsid antibodies detected to suggest natural infection. Twice frozen sera were aliquoted, and serum antibodies were characterized for SARS-CoV-2 spike protein binding (estimated WHO antibody binding units/ml), spike protein competition for ACE-2 binding, and SARS-CoV-2 spike protein pseudotyped lentivirus transduction. These reagents are available for distribution to the research community (BEI Resources), and should allow the direct comparison of antibody neutralization results between different laboratories. Further, these sera are an important tool to evaluate the functional neutralization activity of vaccine-induced antibodies against emerging SARS-CoV-2 variants of concern. IMPORTANCE: The explosion of COVID-19 demonstrated how novel coronaviruses can rapidly spread and evolve following introduction into human hosts. The extent of vaccine- and infection-induced protection against infection and disease severity is reduced over time due to the fall in concentration, and due to emerging variants that have altered antibody binding regions on the viral envelope spike protein. Here, we pooled sera obtained from individuals who were immunized with different SARS-CoV-2 vaccines and who did not have clinical or serologic evidence of prior infection. The sera pools were characterized for direct spike protein binding, blockade of virus-receptor binding, and neutralization of spike protein pseudotyped lentiviruses. These sera pools were aliquoted and are available to allow inter-laboratory comparison of results and to provide a tool to determine the effectiveness of prior vaccines in recognizing and neutralizing emerging variants of concern.

2.
Cell Rep ; 42(11): 113401, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37943660

ABSTRACT

TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.


Subject(s)
Chronic Pain , Sumoylation , Animals , Mice , Chronic Pain/metabolism , Freund's Adjuvant , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Inflammation/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism
3.
J Infect Dis ; 225(2): 214-218, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34734257

ABSTRACT

Air pollution particulate matter (PM) is associated with SARS-CoV-2 infection and severity, although mechanistic studies are lacking. We tested whether airway surface liquid (ASL) from primary human airway epithelial cells is antiviral against SARS-CoV-2 and human alphacoronavirus 229E (CoV-229E) (responsible for common colds), and whether PM (urban, indoor air pollution [IAP], volcanic ash) affected ASL antiviral activity. ASL inactivated SARS-CoV-2 and CoV-229E. Independently, urban PM also decreased SARS-CoV-2 and CoV-229E infection, and IAP PM decreased CoV-229E infection. However, in combination, urban PM impaired ASL's antiviral activity against both viruses, and the same effect occurred for IAP PM and ash against SARS-CoV-2, suggesting that PM may enhance SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Immunity, Innate , Particulate Matter/adverse effects , Urban Population , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Humans , Polymerase Chain Reaction , SARS-CoV-2 , Urban Health
4.
J Infect Dis ; 225(5): 810-819, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34918095

ABSTRACT

The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not completely understood. SARS-CoV-2 infection frequently causes significant immune function consequences including reduced T cell numbers and enhanced T cell exhaustion that contribute to disease severity. The extent to which T cell effects are directly mediated through infection or indirectly result from infection of respiratory-associated cells is unclear. We show that primary human T cells express sufficient levels of angiotensin converting enzyme 2 (ACE-2), the SARS-CoV-2 receptor, to mediate viral binding and entry into T cells. We further show that T cells exposed to SARS-CoV-2 particles demonstrate reduced proliferation and apoptosis compared to uninfected controls, indicating that direct interaction of SARS-CoV-2 with T cells may alter T cell growth, activation, and survival. Regulation of T cell activation and/or turnover by SARS-CoV-2 may contribute to impaired T cell function observed in patients with severe disease.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , T-Lymphocytes/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
5.
J Occup Environ Hyg ; 18(6): 265-275, 2021 06.
Article in English | MEDLINE | ID: mdl-33989113

ABSTRACT

The COVID-19 pandemic has caused a high demand for respiratory protection among health care workers in hospitals, especially surgical N95 filtering facepiece respirators (FFRs). To aid in alleviating that demand, a survey of commercially available filter media was conducted to determine whether any could serve as a substitute for an N95 FFR while held in a 3D-printed mask (Stopgap Surgical Face Mask from the NIH 3D Print Exchange). Fourteen filter media types and eight combinations were evaluated for filtration efficiency, breathing resistance (pressure drop), and liquid penetration. Additional testing was conducted to evaluate two filter media disinfection methods in the event that the filters were reused in a hospital setting. Efficiency testing was conducted in accordance with the procedures established for approving an N95 FFR. One apparatus used a filter-holding device and another apparatus employed a manikin head to which the 3D-printed mask could be sealed. The filter media and combinations exhibited collection efficiencies varied between 3.9% and 98.8% when tested with a face velocity comparable to that of a standard N95 FFR at the 85 L min-1 used in the approval procedure. Breathing resistance varied between 10.8 to >637 Pa (1.1 to > 65 mm H2O). When applied to the 3D-printed mask efficiency decreased by an average of 13% and breathing resistance increased 4-fold as a result of the smaller surface area of the filter media when held in that mask compared to that of an N95 FFR. Disinfection by dry heat, even after 25 cycles, did not significantly affect filter efficiency and reduced viral infectivity by > 99.9%. However, 10 cycles of 59% vaporized H2O2 significantly (p < 0.001) reduced filter efficiency of the media tested. Several commercially available filter media were found to be potential replacements for the media used to construct the typical cup-like N95 FFR. However, their use in the 3D-printed mask demonstrated reduced efficiency and increased breathing resistance at 85 L min-1.


Subject(s)
COVID-19/prevention & control , Disinfection/standards , Equipment Contamination/prevention & control , Materials Testing/standards , N95 Respirators/virology , Occupational Exposure/prevention & control , Pandemics/prevention & control , Air Pollutants, Occupational/analysis , Equipment Failure Analysis/statistics & numerical data , Guidelines as Topic , Humans , Inhalation Exposure/analysis , SARS-CoV-2
6.
Infect Control Hosp Epidemiol ; 42(3): 253-260, 2021 03.
Article in English | MEDLINE | ID: mdl-32783787

ABSTRACT

BACKGROUND: Personal protective equipment (PPE) is a critical need during the coronavirus disease 2019 (COVID-19) pandemic. Alternative sources of surgical masks, including 3-dimensionally (3D) printed approaches that may be reused, are urgently needed to prevent PPE shortages. Few data exist identifying decontamination strategies to inactivate viral pathogens and retain 3D-printing material integrity. OBJECTIVE: To test viral disinfection methods on 3D-printing materials. METHODS: The viricidal activity of common disinfectants (10% bleach, quaternary ammonium sanitizer, 3% hydrogen peroxide, or 70% isopropanol and exposure to heat (50°C, and 70°C) were tested on four 3D-printed materials used in the healthcare setting, including a surgical mask design developed by the Veterans' Health Administration. Inactivation was assessed for several clinically relevant RNA and DNA pathogenic viruses, including severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and human immunodeficiency virus 1 (HIV-1). RESULTS: SARS-CoV-2 and all viruses tested were completely inactivated by a single application of bleach, ammonium quaternary compounds, or hydrogen peroxide. Similarly, exposure to dry heat (70°C) for 30 minutes completely inactivated all viruses tested. In contrast, 70% isopropanol reduced viral titers significantly less well following a single application. Inactivation did not interfere with material integrity of the 3D-printed materials. CONCLUSIONS: Several standard decontamination approaches effectively disinfected 3D-printed materials. These approaches were effective in the inactivation SARS-CoV-2, its surrogates, and other clinically relevant viral pathogens. The decontamination of 3D-printed surgical mask materials may be useful during crisis situations in which surgical mask supplies are limited.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Masks , SARS-CoV-2/drug effects , Virus Inactivation , 2-Propanol , DNA, Viral/drug effects , Decontamination/methods , HIV-1/drug effects , Healthy Volunteers , Hot Temperature , Humans , Hydrogen Peroxide , Personal Protective Equipment , Printing, Three-Dimensional , RNA, Viral/drug effects , Virus Diseases/prevention & control
7.
mBio ; 11(3)2020 05 05.
Article in English | MEDLINE | ID: mdl-32371599

ABSTRACT

The vaginal microbiota influences sexual transmission of human immunodeficiency virus type 1 (HIV-1). Colonization of the vaginal tract is normally dominated by Lactobacillus species. Both Lactobacillus and Enterococcus faecalis may secrete reutericyclin, which inhibits the growth of a variety of pathogenic bacteria. Increasing evidence suggests a potential therapeutic role for an analogue of reutericyclin, glycerol monolaurate (GML), against microbial pathogens. Previous studies using a macaque vaginal simian immunodeficiency virus (SIV) transmission model demonstrated that GML reduces transmission and alters immune responses to infection in vitro Previous studies showed that structural analogues of GML negatively impact other enveloped viruses. We sought to expand understanding of how GML inhibits HIV-1 and other enveloped viruses and show that GML restricts HIV-1 entry post-CD4 engagement at the step of coreceptor binding. Further, HIV-1 and yellow fever virus (YFV) particles were more sensitive to GML interference than particles "matured" by proteolytic processing. We show that high-pressure-liquid-chromatography (HPLC)-purified reutericyclin and reutericyclin secreted by Lactobacillus inhibit HIV-1. These data emphasize the importance and protective nature of the normal vaginal flora during viral infections and provide insights into the antiviral mechanism of GML during HIV-1 infection and, more broadly, to other enveloped viruses.IMPORTANCE A total of 340 million sexually transmitted infections (STIs) are acquired each year. Antimicrobial agents that target multiple infectious pathogens are ideal candidates to reduce the number of newly acquired STIs. The antimicrobial and immunoregulatory properties of GML make it an excellent candidate to fit this critical need. Previous studies established the safety profile and antibacterial activity of GML against both Gram-positive and Gram-negative bacteria. GML protected against high-dose SIV infection and reduced inflammation, which can exacerbate disease, during infection. We found that GML inhibits HIV-1 and other human-pathogenic viruses (yellow fever virus, mumps virus, and Zika virus), broadening its antimicrobial range. Because GML targets diverse infectious pathogens, GML may be an effective agent against the broad range of sexually transmitted pathogens. Further, our data show that reutericyclin, a GML analog expressed by some lactobacillus species, also inhibits HIV-1 replication and thus may contribute to the protective effect of Lactobacillus in HIV-1 transmission.


Subject(s)
Antiviral Agents/pharmacology , Lactobacillus/metabolism , Laurates/pharmacology , Monoglycerides/pharmacology , Viral Envelope Proteins/metabolism , Viruses/drug effects , Animals , Antiviral Agents/metabolism , Female , HIV-1/drug effects , HIV-1/metabolism , HIV-1/physiology , Humans , Laurates/metabolism , Monoglycerides/metabolism , Receptors, Virus/metabolism , Tenuazonic Acid/analogs & derivatives , Tenuazonic Acid/metabolism , Tenuazonic Acid/pharmacology , Vagina/microbiology , Virus Attachment , Virus Internalization , Viruses/metabolism
8.
Clin Infect Dis ; 71(5): 1221-1228, 2020 08 22.
Article in English | MEDLINE | ID: mdl-31671178

ABSTRACT

BACKGROUND: Human pegivirus (HPgV) is a single-strand RNA virus belonging to the Flaviviridae. Although no definitive association between HPgV infection and disease has been identified, previous studies have suggested an association of HPgV viremia with risk of lymphomas. METHODS: We conducted a systematic review and meta-analysis, including 1 cohort study and 14 case-control studies, assessing the association of HPgV viremia with adult lymphomas. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random-effects model, overall and by geographic region and lymphoma subtype. RESULTS: The overall OR for lymphoma was 2.85 (95% CI, 1.98-4.11), with statistically significantly elevated ORs observed in 8 of 15 studies. There was a small amount of heterogeneity among studies (I2 = 28.9%; Q = 18.27, P = .16), and the funnel plot provided no evidence for publication bias. The strongest association with lymphoma risk was observed for studies from Southern Europe (OR, 5.68 [95% CI, 1.98-16.3]), whereas weaker ORs (with 95% CIs) were observed for studies from North America (2.24 [1.76-2.85]), Northern Europe (2.90 [.45-18.7), and the Middle East (2.51 [.87-7.27]), but all of similar magnitude. Participants with HPgV viremia had statistically significantly increased risks (OR [95% CI]) for developing diffuse large B-cell (3.29 [1.63-6.62]), follicular (3.01 [1.95-4.63]), marginal zone (1.90 [1.13-3.18]), and T-cell (2.11 [1.17-3.89]) lymphomas, while the risk for Hodgkin lymphoma (3.53 [.48-25.9]) and chronic lymphocytic leukemia (1.45 [.45-4.66]) were increased but did not achieve statistical significance. CONCLUSIONS: This meta-analysis supports a positive association of HPgV viremia with lymphoma risk, overall and for the major lymphoma subtypes.


Subject(s)
Flaviviridae Infections , Lymphoma , Adult , Cohort Studies , Europe , Humans , Lymphoma/epidemiology , Middle East , North America , Pegivirus , Prevalence , RNA, Viral
9.
Fish Shellfish Immunol ; 97: 344-350, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31846776

ABSTRACT

To study the effect of dietary supplementation of Bacillus licheniformis FA6 on the growth, survival and intestinal health of grass carp, we assessed the antioxidant capacity, intestinal barrier, expression levels of immune genes, and the resistance to Aeromonas hydrophila AH-1 infection. Experimental setup comprised three groups (90 specimens each; average initial weight = 16.5 g): the control group was fed the basal diet without B. licheniformis, the low-dose (LD) group was supplemented with B. licheniformis at the concentration of 1 × 105 cfu/g, and the high-dose (HD) group with 1 × 106 cfu/g. After 56 days of growth trial, the challenge test with A. hydrophila AH-1 was conducted for 14 days. The results revealed that the grass carp in LD group and HD group had significantly (p < 0.05) improved percent weight gain (PWG) and specific growth rate (SGR) parameters. Additionally, the antioxidant status was improved, which included increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in the serum, and upregulated mRNA levels of antioxidant enzymes MnSOD and catalase (CAT) in the intestine. Meanwhile, B. licheniformis FA6 supplementation groups exhibited a decreased mRNA expression of proinflammatory cytokines (such as IL-1ß and TNF-α) and increased the expression of anti-inflammatory cytokine IL-10. Histological (villi length was increased) and gene expression (qPCR: upregulated ZO-1, occludin, and claudin-c) analyses suggested improved functioning of the intestinal barrier. Post-challenge mortality rates in LD and HD groups were significantly lower (56.6% and 70% respectively) than in the control group (100%). Overall, these results indicated that dietary supplementation of B. licheniformis FA6 can improve growth, antioxidant capacity, intestinal barrier functions and disease resistance of grass carp.


Subject(s)
Antioxidants/metabolism , Bacillus licheniformis/chemistry , Carps/immunology , Intestines/immunology , Probiotics/pharmacology , Animal Feed/analysis , Animals , Carps/growth & development , Carps/metabolism , Diet/veterinary , Disease Resistance/physiology , Dose-Response Relationship, Drug , Fish Diseases/immunology , Probiotics/administration & dosage , Random Allocation
10.
Br J Haematol ; 182(5): 644-653, 2018 09.
Article in English | MEDLINE | ID: mdl-29808922

ABSTRACT

We evaluated the association of Human Pegivirus (HPgV) viraemia with risk of developing lymphoma, overall and by major subtypes. Because this virus has also been associated with better prognosis in the setting of co-infection with human immunodeficiency virus, we further assessed the association of HPgV with prognosis. We used risk factor data and banked plasma samples from 2094 lymphoma cases newly diagnosed between 2002 and 2009 and 1572 frequency-matched controls. Plasma samples were tested for HPgV RNA by reverse transcription polymerase chain reaction (RT-PCR), and those with RNA concentrations <5000 genome equivalents/ml were confirmed using nested RT-PCR methods. To assess the role of HPgV in lymphoma prognosis, we used 2948 cases from a cohort study of newly diagnosed lymphoma patients (included all cases from the case-control study). There was a positive association of HPgV viraemia with risk of lymphoma overall (Odds ratio = 2·14; 95% confidence interval [CI] 1·63-2·80; P < 0·0001), and for all major subtypes except Hodgkin lymphoma and chronic lymphocytic leukaemia/small lymphocytic lymphoma, and this was not confounded by other lymphoma risk factors. In contrast, there was no association of HPgV viraemia with event-free survival (Hazard ratio [HR] = 1·00; 95% CI 0·85-1·18) or overall survival (HR = 0·97; 95% CI 0·79-1·20) for lymphoma overall, or any of the subtypes. These data support the hypothesis for a role of HPgV in the aetiology of multiple lymphoma subtypes.


Subject(s)
Flaviviridae Infections/complications , Lymphoma/etiology , Aged , Flaviviridae Infections/mortality , Humans , Middle Aged , Prognosis , RNA, Viral/blood , Risk , Risk Factors , Survival Analysis
11.
J Virol ; 92(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29093095

ABSTRACT

HIV vaccine development is focused on designing immunogens and delivery methods that elicit protective immunity. We evaluated a combination of adenovirus (Ad) vectors expressing HIV 1086.C (clade C) envelope glycoprotein (Env), SIV Gag p55, and human pegivirus GBV-C E2 glycoprotein. We compared replicating simian (SAd7) with nonreplicating human (Ad4) adenovirus-vectored vaccines paired with recombinant proteins in a novel prime-boost regimen in rhesus macaques, with the goal of eliciting protective immunity against SHIV challenge. In both vaccine groups, plasma and buccal Env-specific IgG, tier 1 heterologous neutralizing antibodies, and antibody-dependent cell-mediated viral inhibition were readily generated. High Env-specific T cell responses elicited in all vaccinees were significantly greater than responses targeting Gag. After three intrarectal exposures to heterologous tier 1 clade C SHIV, all 10 sham-vaccinated controls were infected, whereas 4/10 SAd7- and 3/10 Ad4-vaccinated macaques remained uninfected or maintained tightly controlled plasma viremia. Time to infection was significantly delayed in SAd7-vaccinated macaques compared to the controls. Cell-associated and plasma virus levels were significantly lower in each group of vaccinated macaques compared to controls; the lowest plasma viral burden was found in animals vaccinated with the SAd7 vectors, suggesting superior immunity conferred by the replicating simian vectors. Furthermore, higher V1V2-specific binding antibody titers correlated with viral control in the SAd7 vaccine group. Thus, recombinant Ad plus protein vaccines generated humoral and cellular immunity that was effective in either protecting from SHIV acquisition or significantly reducing viremia in animals that became infected, consequently supporting additional development of replicating Ad vectors as HIV vaccines.IMPORTANCE There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV infection and limits in vivo viral replication and associated pathogenesis. Although replicating virus vectors have been advanced as HIV vaccine platforms, there have not been any direct comparisons of the replicating to the nonreplicating format. The present study directly compared the replicating SAd7 to nonreplicating Ad4 vectors in macaques and demonstrated that in the SAd7 vaccine group, the time to infection was significantly delayed compared to the control group, and V1V2 Env-specific binding antibodies correlated with viral outcomes. Viral control was significantly enhanced in vaccinated macaques compared to controls, and in infected SAd7-vaccinated macaques compared to Ad4-vaccinated macaques, suggesting that this vector may have conferred more effective immunity. Because blocking infection is so difficult with current vaccines, development of a vaccine that can limit viremia if infection occurs would be valuable. These data support further development of replicating adenovirus vectors.


Subject(s)
Adenoviridae , Genetic Vectors , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccines, Synthetic , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity/immunology , CD4 Lymphocyte Count , Cell Line , Genetic Vectors/genetics , Genetic Vectors/immunology , Genotype , HIV/immunology , Humans , Immunity, Humoral , Immunization/methods , Kaplan-Meier Estimate , Macaca mulatta , Male , Protein Binding/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Viral Envelope Proteins/immunology , Viral Load
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 42(11): 1263-1269, 2017 Nov 28.
Article in Chinese | MEDLINE | ID: mdl-29187652

ABSTRACT

OBJECTIVE: To investigate the effects of Cordyceps sinensis (CS) on cellular apoptosis and Sirt1 expression in HK2 cells followed by ischemia-reperfusion (I/R).
 Methods: HK2 cells were incubated with different concentrations of CS (10, 20, 40, 80, 160, 320 mg/L) for 24 hours, and the optimal concentration of CS was selected by measuring cell proliferation. The confluent HK2 cells were incubated with 0.01 µmol/L antimycin A for 2 hours to induce ischemia in vitro, and then the reperfusion was achieved by incubating cells with glucose-replete complete growth medium for 24 hours. HK2 cells were divided into 4 groups: a control group, an I/R group, an I/R+CS (160 mg/L) group, and an I/R+CS (160 mg/L)+Sirtinol (25 µmol/L) group. Twenty-four hours later, total RNA and protein were collected. The cell proliferation was evaluated by MTT assay; the mRNA and protein expression of Sirt1 and the cleaved caspase-3 were measured by qRT-PCR and Western blot, respectively. The cellular apoptosis rate was determined by Annexin V-FITC/PI double staining and flow cytometry.
 Results: Certain concentrations (10-160 mg/L) of CS did not show effect on the proliferation of HK2 cells (P>0.05), while 320 mg/L of CS inhibited cell proliferation significantly (P<0.01); compared with the control group, the mRNA and protein expressions of Sirt1 and the cleaved caspase-3 in the I/R group were up-regulated (P<0.01) and the apoptosis rate was extremely high; compared with the I/R group, CS significantly up-regulated Sirt1 mRNA and protein expression (P<0.01) while down-regulated cleaved caspase-3 mRNA and protein levels (P<0.01), and reduced apoptosis rate (P<0.05). The effects of CS were blocked in the presence of sirtinol, an inhibitor of CS.
 Conclusion: CS protects HK2 cells from I/R injury through activation of Sirt1 pathway.


Subject(s)
Apoptosis , Cordyceps , Reperfusion Injury/prevention & control , Sirtuin 1/metabolism , Antifungal Agents , Antimycin A , Benzamides/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Cell Proliferation , Cells, Cultured , Cordyceps/drug effects , Humans , Ischemia/chemically induced , Naphthols/pharmacology , RNA, Messenger/metabolism , Reperfusion Injury/metabolism , Sirtuin 1/genetics
13.
PLoS One ; 12(10): e0187123, 2017.
Article in English | MEDLINE | ID: mdl-29073235

ABSTRACT

T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR) T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs) are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.


Subject(s)
NFATC Transcription Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/metabolism , src-Family Kinases/metabolism , Calcineurin Inhibitors/pharmacology , Humans , Jurkat Cells , T-Lymphocytes/drug effects
14.
J Infect Dis ; 216(9): 1164-1175, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28968905

ABSTRACT

The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.


Subject(s)
Dengue Virus/genetics , RNA/genetics , Receptors, Antigen, T-Cell/genetics , Signal Transduction/genetics , Virus Replication/genetics , Yellow fever virus/genetics , Zika Virus/genetics , Dengue Virus/pathogenicity , Humans , Yellow fever virus/pathogenicity , Zika Virus/pathogenicity
15.
PLoS Pathog ; 13(2): e1006232, 2017 02.
Article in English | MEDLINE | ID: mdl-28235043

ABSTRACT

Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3' UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence.


Subject(s)
Hepatitis C/immunology , Immune Evasion/immunology , Lymphocyte Activation/immunology , Receptor-Like Protein Tyrosine Phosphatases, Class 4/immunology , T-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Hepacivirus/immunology , Humans , Immunoblotting , RNA, Viral/immunology , Receptors, Antigen, T-Cell/immunology , Transfection
16.
Front Psychiatry ; 6: 132, 2015.
Article in English | MEDLINE | ID: mdl-26441693

ABSTRACT

Smoking is associated with poorer health outcomes for both African and European Americans. In order to better understand whether ethnic-specific genetic variation may underlie some of these differences, we compared the smoking-associated genome-wide methylation signatures of African Americans with those of European Americans, and followed up this analysis with a focused examination of the most ethnically divergent locus, cg19859270, at the GPR15 gene. We examined the association of methylation at this locus to the rs2230344 SNP and GPR15 gene and protein expression. Consistent with prior analyses, AHRR residue cg05575921 was the most differentially methylated residue in both African Americans and European Americans. However, the second most differentially methylated locus in African Americans, cg19859270, was only modestly differentially methylated in European Americans. Interrogation of the methylation status of this CpG residue found in GPR15, a chemokine receptor involved in HIV pathogenesis, showed a significant interaction of ethnicity with smoking as well as a marginal effect of genotype at rs2230344, a neighboring non-synonymous SNP, but only among African Americans. Gene and protein expression analyses showed that demethylation at cg19859270 was associated with an increase in both mRNA and protein levels. Since GPR15 is involved in the early stages of viral replication for some HIV-1 and HIV-2 isolates, and the prevalence of HIV is increased in African Americans and smokers, these data support a possible role for GPR15 in the ethnically dependent differential prevalence of HIV.

17.
PLoS Pathog ; 11(9): e1005183, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26421924

ABSTRACT

T cell receptor (TCR) signaling is required for T-cell activation, proliferation, differentiation, and effector function. Hepatitis C virus (HCV) infection is associated with impaired T-cell function leading to persistent viremia, delayed and inconsistent antibody responses, and mild immune dysfunction. Although multiple factors appear to contribute to T-cell dysfunction, a role for HCV particles in this process has not been identified. Here, we show that incubation of primary human CD4+ and CD8+ T-cells with HCV RNA-containing serum, HCV-RNA containing extracellular vesicles (EVs), cell culture derived HCV particles (HCVcc) and HCV envelope pseudotyped retrovirus particles (HCVpp) inhibited TCR-mediated signaling. Since HCVpp's contain only E1 and E2, we examined the effect of HCV E2 on TCR signaling pathways. HCV E2 expression recapitulated HCV particle-induced TCR inhibition. A highly conserved, 51 nucleotide (nt) RNA sequence was sufficient to inhibit TCR signaling. Cells expressing the HCV E2 coding RNA contained a short, virus-derived RNA predicted to be a Dicer substrate, which targeted a phosphatase involved in Src-kinase signaling (PTPRE). T-cells and hepatocytes containing HCV E2 RNA had reduced PTPRE protein levels. Mutation of 6 nts abolished the predicted Dicer interactions and restored PTPRE expression and proximal TCR signaling. HCV RNA did not inhibit distal TCR signaling induced by PMA and Ionomycin; however, HCV E2 protein inhibited distal TCR signaling. This inhibition required lymphocyte-specific tyrosine kinase (Lck). Lck phosphorylated HCV E2 at a conserved tyrosine (Y613), and phospho-E2 inhibited nuclear translocation of NFAT. Mutation of Y613 restored distal TCR signaling, even in the context of HCVpps. Thus, HCV particles delivered viral RNA and E2 protein to T-cells, and these inhibited proximal and distal TCR signaling respectively. These effects of HCV particles likely aid in establishing infection and contribute to viral persistence.


Subject(s)
Hepatitis C/immunology , Lymphocyte Activation/immunology , RNA, Viral/immunology , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Base Sequence , Conserved Sequence , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hepacivirus , Humans , Immunoblotting , Immunoprecipitation , Polymerase Chain Reaction , Receptors, Antigen, T-Cell/immunology , Virion/immunology
18.
Virology ; 485: 116-27, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26245365

ABSTRACT

Human Pegivirus (HPgV, formally GB virus C) infects lymphocytes and NK cells in vivo, and infection is associated with reduced T cell and NK cell activation in HIV-infected individuals. The mechanism by which HPgV inhibits NK cell activation has not been assessed. Following IL-12 stimulation, IFNγ expression was lower in HIV-HPgV co-infected subjects compared to HIV mono-infected subjects (p=0.02). In addition, HPgV positive human sera, extracellular vesicles containing E2 protein, recombinant E2 protein and synthetic E2 peptides containing a predicted Tyk2 interacting motif inhibited NK cell IL-12-mediated IFNγ release. E2 protein also inhibited Tyk2 activation following IL-12 stimulation. In contrast, cytolytic NK cell function was not altered by HPgV. Inhibition of NK cell-induced proinflammatory/antiviral cytokines may contribute to both HPgV persistence and reduced immune activation during HIV-coinfection. Understanding mechanisms by which HPgV alters immune activation may contribute towards novel immunomodulatory therapies to treat HIV and inflammatory diseases.


Subject(s)
Flaviviridae Infections/virology , Flavivirus/physiology , Gene Expression Regulation, Viral , HIV Infections/virology , Interleukin-12/pharmacology , Killer Cells, Natural/drug effects , Adult , Amino Acid Sequence , Cell Degranulation/drug effects , Cell Line , Coinfection , Female , Flaviviridae Infections/immunology , Flaviviridae Infections/pathology , Flavivirus/pathogenicity , HIV/physiology , HIV Infections/immunology , HIV Infections/pathology , Host-Pathogen Interactions , Humans , Interferon-gamma , K562 Cells , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Male , Middle Aged , Molecular Sequence Data , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Load , Virus Replication
19.
Trans Am Clin Climatol Assoc ; 125: 14-24; discussion 24-6, 2014.
Article in English | MEDLINE | ID: mdl-25125715

ABSTRACT

Hepatitis C virus (HCV) and GB virus type C (GBV-C) are associated with impaired T cell function despite the fact that HCV replicates in hepatocytes and GBV-C in a small proportion of lymphocytes. Recently, we showed that HCV and GBV-C E2-envelope proteins reduce T cell activation via the T cell receptor (TCR) by competing for phosphorylation with a critical kinase in the TCR signaling cascade (Lck). E2 interfered with TCR signaling in E2 expressing cells and in bystander cells. The bystander effect was mediated by virus particles and extracellular microvesicular particles (exosomes). Multiple kinase substrate sites are predicted to reside on viral structural proteins and based on bioinformatic predictions, many RNA virus pathogens may interfere with TCR signaling via a similar mechanism. Identification of T cell inhibitory effects of virus structural proteins may provide novel approaches to enhance the immunogenicity and memory of viral vaccines.


Subject(s)
GB virus C/immunology , Hepacivirus/immunology , Hepatitis/immunology , Immune Evasion , Lymphocyte Activation , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Animals , GB virus C/metabolism , GB virus C/pathogenicity , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Hepatitis/epidemiology , Hepatitis/history , Hepatitis/metabolism , Hepatitis/virology , History, 20th Century , History, 21st Century , Host-Pathogen Interactions , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Viral Envelope Proteins/metabolism
20.
AIDS ; 27(11): 1829-32, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23807277

ABSTRACT

GB virus C (GBV-C), a pan-lymphotropic flavivirus capable of persistent infection, is associated with prolonged survival and reduced T-cell activation in HIV-infected patients. GBV-C was associated with reduced CD56brt/CD16- natural killer cell and monocyte activation, and a trend toward reduced B-cell activation by measuring cell surface activation markers or HIV entry coreceptors. The GBV-C association was independent of HIV viral load. Thus, GBV-C may influence non-T-cell immune activation in individuals with HIV infection.


Subject(s)
B-Lymphocytes/immunology , Flaviviridae Infections/diagnosis , GB virus C/immunology , HIV Infections/complications , Hepatitis, Viral, Human/diagnosis , Killer Cells, Natural/immunology , Monocytes/immunology , CD56 Antigen/analysis , Flaviviridae Infections/pathology , Flaviviridae Infections/virology , GPI-Linked Proteins/analysis , Hepatitis, Viral, Human/pathology , Hepatitis, Viral, Human/virology , Humans , Immune Tolerance , Receptors, IgG/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...