Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35885188

ABSTRACT

The breakthrough of wireless energy transmission (WET) technology has greatly promoted the wireless rechargeable sensor networks (WRSNs). A promising method to overcome the energy constraint problem in WRSNs is mobile charging by employing a mobile charger to charge sensors via WET. Recently, more and more studies have been conducted for mobile charging scheduling under dynamic charging environments, ignoring the consideration of the joint charging sequence scheduling and charging ratio control (JSSRC) optimal design. This paper will propose a novel attention-shared multi-agent actor-critic-based deep reinforcement learning approach for JSSRC (AMADRL-JSSRC). In AMADRL-JSSRC, we employ two heterogeneous agents named charging sequence scheduler and charging ratio controller with an independent actor network and critic network. Meanwhile, we design the reward function for them, respectively, by considering the tour length and the number of dead sensors. The AMADRL-JSSRC trains decentralized policies in multi-agent environments, using a centralized computing critic network to share an attention mechanism, and it selects relevant policy information for each agent at every charging decision. Simulation results demonstrate that the proposed AMADRL-JSSRC can efficiently prolong the lifetime of the network and reduce the number of death sensors compared with the baseline algorithms.

2.
Entropy (Basel) ; 23(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34682035

ABSTRACT

Battery energy storage technology is an important part of the industrial parks to ensure the stable power supply, and its rough charging and discharging mode is difficult to meet the application requirements of energy saving, emission reduction, cost reduction, and efficiency increase. As a classic method of deep reinforcement learning, the deep Q-network is widely used to solve the problem of user-side battery energy storage charging and discharging. In some scenarios, its performance has reached the level of human expert. However, the updating of storage priority in experience memory often lags behind updating of Q-network parameters. In response to the need for lean management of battery charging and discharging, this paper proposes an improved deep Q-network to update the priority of sequence samples and the training performance of deep neural network, which reduces the cost of charging and discharging action and energy consumption in the park. The proposed method considers factors such as real-time electricity price, battery status, and time. The energy consumption state, charging and discharging behavior, reward function, and neural network structure are designed to meet the flexible scheduling of charging and discharging strategies, and can finally realize the optimization of battery energy storage benefits. The proposed method can solve the problem of priority update lag, and improve the utilization efficiency and learning performance of the experience pool samples. The paper selects electricity price data from the United States and some regions of China for simulation experiments. Experimental results show that compared with the traditional algorithm, the proposed approach can achieve better performance in both electricity price systems, thereby greatly reducing the cost of battery energy storage and providing a stronger guarantee for the safe and stable operation of battery energy storage systems in industrial parks.

3.
Sci Rep ; 6: 31465, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27515274

ABSTRACT

Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...