Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37856192

ABSTRACT

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Phenotype , Waxes/metabolism
2.
Foods ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509842

ABSTRACT

Tomato fruit is highly susceptible to infection by Botrytis cinerea (B. cinerea), a dominant pathogen, during storage. Recent studies have shown that autophagy is essential for plant defense against biotic and abiotic stresses. Autophagy-related gene 5 (ATG5) plays a key role in autophagosome completion and maturation, and is rapidly induced by B. cinerea, but the potential mechanisms of ATG5 in Solanum lycopersicum (SlATG5) in postharvest tomato fruit resistance to B. cinerea remain unclear. To elucidate the role of SlATG5 in tomato fruit resistant to B. cinerea, CRISPR/Cas9-mediated knockout of SlATG5 was used in this study. The results showed that slatg5 mutants were more vulnerable to B. cinerea and exhibited more severe disease symptoms and lower activities of disease-resistant enzymes, such as chitinase (CHI), ß-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO), than the wild type (WT). Furthermore, the study observed that after inoculation with B. cinerea, the relative expression levels of genes related to salicylic acid (SA) signaling, such as SlPR1, SlEDS1, SlPAD4, and SlNPR1, were higher in slatg5 mutants than in WT. Conversely, the relative expression levels of jasmonic acid (JA) signaling-related genes SlLoxD and SlMYC2 were lower in slatg5 mutants than in WT. These findings suggested that SlATG5 positively regulated the resistance response of tomato fruit to B. cinerea by inhibiting the SA signaling pathway and activating the JA signaling pathway.

3.
Biosensors (Basel) ; 11(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34821623

ABSTRACT

This Perspective discusses the literature related to two-phase biocatalysis in microfluidic droplets. Enzymes used as catalysts in biocatalysis are generally less stable in organic media than in their native aqueous environments; however, chemical and pharmaceutical compounds are often insoluble in water. The use of aqueous/organic two-phase media provides a solution to this problem and has therefore become standard practice for multiple biotransformations. In batch, two-phase biocatalysis is limited by mass transport, a limitation that can be overcome with the use of microfluidic systems. Although, two-phase biocatalysis in laminar flow systems has been extensively studied, microfluidic droplets have been primarily used for enzyme screening. In this Perspective, we summarize the limited published work on two-phase biocatalysis in microfluidic droplets and discuss the limitations, challenges, and future perspectives of this technology.


Subject(s)
Microfluidics , Water , Biocatalysis
4.
Eur J Radiol ; 139: 109683, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33836337

ABSTRACT

OBJECTIVE: We aimed to investigate the risk factors of invasive pulmonary adenocarcinoma, especially to report and validate the use of our newly identified arc concave sign in predicting invasiveness of pure ground-glass nodules (pGGNs). METHODS: From January 2015 to August 2018, we retrospectively enrolled 302 patients with 306 pGGNs ≤ 20 mm pathologically confirmed (141 preinvasive lesions and 165 invasive lesions). Arc concave sign was defined as smooth and sunken part of the edge of the lesion on thin-section computed tomography (TSCT). The degree of arc concave sign was expressed by the arc chord distance to chord length ratio (AC-R); deep arc concave sign was defined as AC-R larger than the optimal cut-off value. Logistic regression analysis was used to identify the independent risk factors of invasiveness. RESULTS: Arc concave sign was observed in 65 of 306 pGGNs (21.2 %), and deep arc concave sign (AC-R > 0.25) were more common in invasive lesions (P = 0.008). Under microscope, interlobular septal displacements were found at tumour surface. Multivariate analysis indicated that irregular shape (OR, 3.558; CI: 1.374-9.214), presence of deep arc concave sign (OR, 3.336; CI: 1.013-10.986), the largest diameter > 10.1 mm (OR, 4.607; CI: 2.584-8.212) and maximum density > -502 HU (OR, 6.301; CI: 3.562-11.148) were significant independent risk factors of invasive lesions. CONCLUSIONS: Arc concave sign on TSCT is caused by interlobular septal displacement. The degree of arc concave sign can reflect the invasiveness of pGGNs. Invasive lesions can be effectively distinguished from preinvasive lesions by the presence of deep arc concave sign, irregular shape, the largest diameter > 10.1 mm and maximum density > -502 HU in pGGNs ≤ 20 mm.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/diagnostic imaging , Adenocarcinoma of Lung/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Neoplasm Invasiveness/diagnostic imaging , Retrospective Studies
5.
Diabetol Metab Syndr ; 12: 1, 2020.
Article in English | MEDLINE | ID: mdl-31921358

ABSTRACT

BACKGROUND: Diabetes mellitus is an important risk factor for cardiomyopathy. Increasing oxidative stress may be one of the main factors of diabetic cardiomyopathy. A13, a newly synthesized curcumin analog, was proved to be superior to curcumin in biological activity. However, little know about how A13 performed in diabetic models. In this study, we evaluated the ability of curcumin analog A13 to alleviate oxidative stress and ameliorate fibrosis in the myocardium, and explore the underlying mechanisms. METHODS: Intraperitoneal injection of streptozotocin (30 mg/kg in 0.1 M sodium citrate buffer, pH 4.5) induced diabetes in high-fat fed rats. The rats were respectively treated with a daily dose of curcumin or A13 via intragastric intubation for 8 weeks. Myocardial tissue sections were stained with hematoxylin-eosin; oxidative stress was detected by biochemical assays; activation of the Nrf2/ARE pathway was detected by Western blot, immunohistochemical staining and RT-qPCR; myocardial fibrosis was identified by Western blot and Masson trichrome staining. RESULTS: Treatment with curcumin analog A13 reduced the histological lesions of the myocardium in diabetic rats. Curcumin and A13 treatment decreased the malondialdehyde level and increased the activity of superoxide dismutase in the myocardium of diabetic rats. Molecular analysis and immunohistochemical staining demonstrated that dose of 20 mg/kg of A13 could activate the Nrf2/ARE pathway. Molecular analysis and Masson staining showed that curcumin analog A13 treatment significantly ameliorated fibrosis in myocardium of these diabetic rats. CONCLUSION: Treatment with curcumin analog A13 protects the morphology of myocardium, restores the MDA levels and SOD activity, activates the Nrf2/ARE pathway and ameliorates myocardial fibrosis in diabetic rats. It may be a useful therapeutic agent for some aspects of diabetic cardiomyopathy.

6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(3): 273-278, 2019 May 28.
Article in Chinese | MEDLINE | ID: mdl-31257812

ABSTRACT

OBJECTIVE: To investigate the effects of myeloid differentiation-2 (MD2) gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes. METHODS: The immortalized rat cardiomyocyte cell line H9C2 were transfected with MD2 small interfering RNA (si-MD2) and negative control for 24 h, then stimulated with high glucose (HG) for 48 h. RT-qPCR was performed to detect the mRNA levels of MD2 and inflammatory factors TNF-α, IL-1ß and IL-6. MTS and flow cytometry were used to evaluate cell proliferation, cell cycle and apoptosis rate. Western blot was used to detect protein expression levels and phosphorylation levels. RESULTS: The mRNA and protein levels of MD2 in H9C2 cells were dramatically decreased after transfected with si-MD2 (P<0.01). After stimulation of high glucose, the mRNA levels of inflammatory factors, the cells in G0/G1 phase , the cell apoptosis rate and the protein level of cleaved Caspase-3 were significantly increased, while the cell proliferation ability was decreased (P<0.01). MD2 gene silencing antagonized the effects of high glucose on cell proliferation, cell cycle, cell apoptosis and the mRNA levels of TNF-α, IL-1ß , IL-6(P<0.05). Western blot analysis showed that the phosphorylation levels of extracellular signal-regulated kinase(ERK1/2), P38 mitogen-activated protein kinase(P38 MAPK) and C-Jun N-terminal kinase(JNK) protein were increased significantly in H9C2 cells treated with high glucose, which could be reversed by silencing of MD2 (P<0.01). CONCLUSION: This study demonstrates that MD2 gene silencing reverses high glucose-induced myocardial inflammation, apoptosis and proliferation inhibition via the mechanisms involving suppression of ERK, P38 MAPK, JNK signaling pathway.


Subject(s)
Apoptosis , Cell Proliferation , Gene Silencing , Lymphocyte Antigen 96/genetics , Myocytes, Cardiac/cytology , Animals , Cells, Cultured , Cytokines/metabolism , Glucose , Inflammation , JNK Mitogen-Activated Protein Kinases/metabolism , Rats , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Ther Clin Risk Manag ; 13: 1099-1105, 2017.
Article in English | MEDLINE | ID: mdl-28894373

ABSTRACT

SCOPE: The present study was designed to examine the damage caused by high-fat diet and streptozotocin-induced diabetes on the testis of rats and the effects of curcumin against oxidative stress and apoptosis from high-fat diet and diabetes. METHODS: Diabetes was induced by intraperitoneal injection of streptozotocin (30 mg/kg in 0.1 M sodium citrate buffer, pH 4.5) in obese rats. The rats in the obese and diabetic groups were treated with a daily dose of curcumin by intragastric intubation (100 mg/kg body weight) for 8 weeks. Testis tissue sections were stained with hematoxylin-eosin, and apoptosis was identified in situ by using terminal deoxynucleotidyl transferase dUTP nick end labeling. RESULTS: Curcumin treatment improved the histological appearance of the testis and significantly reduced the apoptosis level in the testicular cells of the obese and the diabetic rats. The expression of proliferating cell nuclear antigen (PCNA) was restored in the testis tissues of diabetic rats at the end of curcumin treatment. Molecular analysis demonstrated that curcumin treatment significantly and simultaneously decreased Bax and increased Bcl-2 expressions, therefore elevating the ratio of Bcl-2/Bax. Furthermore, curcumin treatment significantly decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) levels in testis tissue samples of the diabetic rats. CONCLUSION: Curcumin treatment preserved the morphology of testes; restored the expression of PCNA, MDA, and SOD; and inhibited testicular cell death in diabetic rats. The capability of curcumin in inhibiting oxidative stress and modulating the Bax/Bcl-2-mediated cell death pathway reveals its potential as a therapeutic agent against diabetes.

8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 33(1): 11-15, 2017 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-29926600

ABSTRACT

OBJECTIVE: To investigate the protective effect of curcumin analogue L6H4 on the kidney from the type 2 diabetic rats. METHODS: Twenty-four SPF male SD rats were randomly divided into 3 groups(n=8):normal control group(NC),diabetes mellitus group(DM) and DM+L6H4-treatment group(DT). After rats were fed with high-fat diet for 4 weeks, both the DM and DT groups were injected with streptozotocin intraperitoneally to induce type 2 diabetes mellitus models. The rats in DT group were given L6H4 by gavage at the dose of 0.2 mg/kg·d for 8 weeks. After the treatment, the 24 h urinary protein, fasting blood glucose (FBG), triglyceride (TG), serum creatinine(Scr),blood urea nitrogen (BUN) and uric acid (UA) were detected biochemically. The pathological changes of the kidneys were observed under light and transmission electron microscopes. The expressions of TGF-ß1, FN and Col IV were detected by immunohistochemistry. RESULTS: The levels of the 24 h urinary protein, FBG, TG, Scr and BUN were elevated significantly in diabetic group(P<0.01). The glomerular volume of DM group rats became irregularly enlarged, diffused mesangial matrix accumulated, with basal membrane proliferous hypertrophy and fusion phenomenon of foot process, the expressions of TGF-ß1,FN and Col-IV were elevated significantly (P<0.05). After treated with L6H4, the levels of the 24 h urinary protein, FBG, TG, Scr and BUN were decreased in DT group compared to DM group (P<0.01), the morphological changes of kidney were ameliorated. The expression levels of TGF-ß1, FN and Col-IV were downregulated (P<0.05). CONCLUSIONS: L6H4 exerts the protective effect on kidneys of type 2 diabetic rats by reducing expression of TGF-ß1, inhibiting secretion of Col-IV and FN, relieving the deposition of the extracellular matrix.


Subject(s)
Curcumin/analogs & derivatives , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/drug therapy , Kidney/drug effects , Animals , Blood Glucose/analysis , Blood Urea Nitrogen , Collagen Type IV/metabolism , Creatinine/blood , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/pathology , Extracellular Matrix/metabolism , Fibronectins/metabolism , Kidney/pathology , Male , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Triglycerides/blood , Uric Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...