Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 13: 930790, 2022.
Article in English | MEDLINE | ID: mdl-35847104

ABSTRACT

Aglaonema modestum (A. modestum) (Araceae) is an evergreen herbage, which is intensively grown as an ornamental plant in South China. A new disease was observed in A. modestum from 2020 to 2021 in Guangdong province, China. The disease symptoms associated with plants were initial leaf wilt, stem rot, and resulting plant death, leading to severe economic losses. In total, six Fusarium isolates were obtained from diseased plants. The putative pathogen was identified using both morphological characteristics and molecular phylogenetic analysis of calmodulin A (cmdA), RNA polymerase largest subunit 1 (rpb1), RNA polymerase II (rpb2), translation elongation factor-1α (tef1-α), and beta-tubulin (ß-tubulin) sequences. Two Fusarium species were identified, namely, one new species, Fusarium aglaonematis (F. aglaonematis) belonging to Fusarium fujikuroi species complex. In addition, Fusarium elaeidis (F. elaeidis) belonging to the Fusarium oxysporum (F. oxysporum) species complex was also identified. Pathogenicity assays were conducted by inoculating each species into potted A. modestum plants and co-inoculating two species. The results showed that two Fusarium species could infect plants independently and can infect them together. Co-infection of these two species enhanced the disease severity of A. modestum. Compared to single inoculation of F. elaeidis, severity was higher and disease development was quicker when plants were only inoculated with F. aglaonematis. In addition, these two Fusarium species could infect Aglaonema plants without wounds, while inoculation with a physical injury increased disease severity. This is the first report of co-infection by F. aglaonematis and F. elaeidis causing stem rot on A. modestum worldwide. This study will be an addition to the knowledge of Fusarium diseases in ornamental plants. These results will provide a baseline to identify and control diseases associated with A. modestum.

2.
J Fungi (Basel) ; 8(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35887474

ABSTRACT

Calonectria species are important plant pathogens on a wide range of hosts, causing significant losses to plant production worldwide. During our survey on phytopathogenic fungi from 2019 to 2021, diseased samples were collected from various hosts in Guangdong Province, China. In total, 16 Calonectria isolates were obtained from leaf spots, stem blights and root rots of species of Arachis, Cassia, Callistemon, Eucalyptus, Heliconia, Melaleuca and Strelitzia plants. Isolates were identified morphologically, and a multigene phylogenetic analysis of combined partial sequences of calmodulin (cmdA), translation elongation factor 1-alpha (tef1-α) and beta-tubulin (ß-tubulin) was performed. These sixteen isolates were further identified as nine Calonectria species, with five new species: Ca. cassiae, Ca. guangdongensis, Ca. melaleucae, Ca. shaoguanensis and Ca. strelitziae, as well as four new records: Ca. aconidialis from Arachis hypogaea, Ca. auriculiformis from Eucalyptus sp., Ca. eucalypti from Callistemon rigidus, and Ca. hongkongensis from Eucalyptus gunnii. Moreover, we provide updated phylogenetic trees for four Calonectria species complexes viz. Ca. colhounii, Ca. cylindrospora, Ca. kyotensis and Ca. reteaudii. Our study is the first comprehensive study on Calonectria species associated with various hosts from subtropical regions in China. Results from the present study will be an addition to the biodiversity of microfungi in South China.

3.
Pathogens ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34832551

ABSTRACT

Alocasia longiloba is a popular ornamental plant in China, however pests and diseases associated with A. longiloba reduce the ornamental value of this plant. From 2016 to 2021, stem and root rot has been observed on A. longiloba in Guangdong Province, China. Once the disease became severe, plants wilted and died. A fungus was isolated from the diseased stem and identified as Fusarium elaeidis using both morphological characteristics and molecular analysis of DNA-directed RNA polymerase II subunit (rpb2), translation elongation factor-1α (tef1) gene and ß-tubulin (tub2) sequence data. The pathogenicity test showed the fungus was able to produce typical symptoms on A. longiloba similar to those observed in the field. The original pathogen was reisolated from inoculated plants fulfilling Koch's postulates. This is the first report of Fusarium elaeidis causing stem rot on A. longiloba. These results will provide a baseline to identify and control diseases associated with A. longiloba.

4.
Pathogens ; 10(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34578126

ABSTRACT

Pogostemon cablin is one of the well-known Southern Chinese medicinal plants with detoxification, anti-bacterial, anti-inflammatory, and other pharmacological functions. Identification and characterization of phytopathogens on P. cablin are of great significance for the prevention and control of diseases. From spring to summer of 2019 and 2020, a leaf spot disease on Pogostemon cablin was observed in Guangdong Province, South China. The pathogen was isolated and identified based on both morphological and DNA molecular approaches. The molecular identification was conducted using multi-gene sequence analysis of large subunit (LSU), the nuclear ribosomal internal transcribed spacer (ITS), beta-tubulin (ß-tubulin), and RNA polymerase II (rpb2) genes. The causal organism was identified as Stagonosporopsis pogostemonis, a novel fungal species. Pathogenicity of Stagonosporopsis pogostemonis on P. cablin was fulfilled via confining the Koch's postulates, causing leaf spots and stem blight disease. This is the first report of leaf spot diseases on P. cablin caused by Stagonosporopsis species worldwide.

5.
Front Microbiol ; 12: 661281, 2021.
Article in English | MEDLINE | ID: mdl-33936017

ABSTRACT

Arthrinium has a widespread distribution occurring in various substrates (e.g., air, soil debris, plants, lichens, marine algae and even human tissues). It is characterized by the basauxic conidiogenesis in the asexual morph, with apiospores in the sexual morph. In this study, seventeen isolates of Arthrinium were collected in China. Based on their morphology and phylogenetic characterization, four new species (A. biseriale, A. cyclobalanopsidis, A. gelatinosum, and A. septatum) are described and seven known species (A. arundinis, A. garethjonesii, A. guizhouense, A. hydei, A. neosubglobosa, A. phyllostachium and A. psedoparenchymaticum) are identified, of which the sexual morph of three species (A. guizhouense, A. phyllostachium and A. psedoparenchymaticum) and asexual morph of A. garethjonesii are reported for the first time. The detailed descriptions, illustrations and comparisons with related taxa of these new collections are provided. Phylogenetic analyses of combined ITS, LSU, TUB2, and TEF sequence data support their placements in the genus Arthrinium and justify the new species establishments and identifications of known species.

6.
Front Microbiol ; 11: 609387, 2020.
Article in English | MEDLINE | ID: mdl-33633693

ABSTRACT

Diaporthe species are associated with Citrus as endophytes, pathogens, and saprobes worldwide. However, little is known about Diaporthe as endophytes in Citrus grandis in China. In this study, 24 endophytic Diaporthe isolates were obtained from cultivated C. grandis cv. "Tomentosa" in Huazhou, Guangdong Province in 2019. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1), ß-tubulin (tub2), and partial calmodulin (cal) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, eleven Diaporthe species were identified including two new species, Diaporthe endocitricola and D. guangdongensis. These are the first report of D. apiculata, D. aquatica, D. arecae, D. biconispora, D. limonicola, D. masirevicii, D. passifloricola, D. perseae, and D. sennae on C. grandis. This study provides the first intensive study of endophytic Diaporthe species on C. grandis cv. tomentosa in China. These results will improve the current knowledge of Diaporthe species associated with C. grandis. The results obtained in this study will also help to understand the potential pathogens and biocontrol agents and to develop a platform in disease management.

7.
Genome Announc ; 5(7)2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28209821

ABSTRACT

Here, we present the genome sequence of an isolate (14004) of Fusarium oxysporum f. sp. melongenae, an eggplant pathogen. The final assembly consists of 1,631 scaffolds with 53,986,354 bp (G+C content, 46.4%) and 16,485 predicted genes.

8.
Plant Physiol Biochem ; 65: 81-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23434925

ABSTRACT

The effect of the toxin vulculic acid produced by Nimbya alternantherae, on the photosynthetic apparatus of Alternanthera philoxeroides, was investigated via the photochemical activity and SDS-PAGE of protein on thylakoid membranes, fast chlorophyll a fluorescence transient measurements and the JIP-test. The electron transport rate of photosystem II (PSII), non-cyclic photophosphorylation activity, as well as the activity of chloroplast ATPase and Rubisco reduced significantly after vulculic acid treatment. Vulculic acid affected the O-J-I-P fluorescence induction kinetics, showing an increase of the parameters FV/FO, VK and VJ and a decrease of FO, FM, PIABS, φPo, ψEo, φEo, φRo, δRo and PItotal. In addition, it significantly decreased the amounts of major photosystem I (PSI) and PSII proteins. It is concluded that vulculic acid is a photosynthetic inhibitor with multiple action sites. The main targets are the light harvesting complex (LHC) and the oxygen evolving complex (OEC) on the PSII donor side. Vulculic acid blocks electron transport beyond QA and on the PSI acceptor side by digesting major PSI and PSII proteins.


Subject(s)
Amaranthaceae/microbiology , Mycotoxins/pharmacology , Amaranthaceae/drug effects , Light-Harvesting Protein Complexes/drug effects , Photosynthesis/drug effects , Thylakoids/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL