Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15735, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977721

ABSTRACT

The influence of precipitated nanophases on the mechanical properties of Fe-based amorphous nanocrystalline alloys is an urgent issue to be explored. Two amorphous nanocrystalline alloys, i.e., (Fe0.9Ni0.1)86B14 and (Fe0.7Ni0.3)86B14 containing nanophase of the body-centered cubic and face-centered cubic structures, respectively, were selected to investigate the effect of the structure and volume fraction of nanophase on their mechanical properties. The results of nanoindentation experiments and the calculation of the volume and size of the shear transition zone reveal that the two alloys show different mechanical properties. When the volume fraction of the nanophase in (Fe0.9Ni0.1)86B14 is larger than 50%, the elastic modulus is increased suddenly and the volume and size of the shear transition zone is decreased dramatically, while no dramatic change occurs in (Fe0.7Ni0.3)86B14. Moreover, it was found by using molecular dynamics simulations that the main reason for these abnormal mechanical properties is the change of cluster type in the system due to the incorporation of nanophases with different structures.

2.
Environ Sci Pollut Res Int ; 28(35): 48038-48052, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33900554

ABSTRACT

Metallic glasses (MGs) with unique disordered atomic stacking structures exhibit excellent catalytic performance in wastewater treatment. The catalytic degradation of Orange II (AO II) aqueous solutions by four CuZr-based MG ribbons under such processing parameters as pH values, the dosage of ribbons, and temperature was investigated in this paper. The catalytic performance of the MG ribbons was characterized by using the degradation efficiency of the dye wastewater. The phase constituent, surface morphology, and chemical valence state of elements on the surface of MG ribbons before and after use were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that the Cu46Zr42Al7Y5 MG ribbon has the best catalytic performance among the Cu46Zr47-xAl7Yx (x = 0, 1, 3, 5) MGs in the degradation process, and the dye in the wastewater can almost be completely decolorized within 60 min under the conditions of pH = 2, the dosage of ribbons being 1.8 g/L and water bath temperature of 313 K, with the degradation efficiency and chemical oxygen demand removal being 96.05% and 51.73%, respectively. Furthermore, the Cu46Zr42Al7Y5 MG ribbon still shows superior structural stability and degradation performance after repeated use, and the corrosion pits on the MG surface promote the physicochemical reaction between the wastewater and the ribbons.


Subject(s)
Water Pollutants, Chemical , Water Purification , Biological Oxygen Demand Analysis , Catalysis , Wastewater , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 27(32): 40101-40108, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32656754

ABSTRACT

The oily wastewater was treated by electrocoagulation with Fe78Si9B13 amorphous ribbons as anode and graphite plates as cathode under such processing parameters as different pH values and current density, respectively. The degradation effect on the oily wastewater was characterized by chemical demand oxygen (COD), while the ribbons before and after using were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicate that under the conditions of pH = 3 and current density being 3.125 A/cm2, the optimal COD removal efficiency was obtained to be 73.22%. Compared with the ordinary crystalline iron plate, the COD removal efficiency of resultant wastewater degraded by the amorphous ribbons is more than doubled. Simultaneously, the Fe78Si9B13 amorphous ribbons exhibit good structural stability even after four cycles of using.


Subject(s)
Wastewater , Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Electrocoagulation , Electrodes , Hydrogen-Ion Concentration , Industrial Waste/analysis , Oils , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...