Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(44): eadi7337, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922350

ABSTRACT

Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Animals , Mice , Pregnancy , Humans , Female , Diabetes, Gestational/metabolism , Diabetes, Gestational/pathology , Placenta/metabolism , Butyrates/pharmacology , Butyrates/metabolism , Inflammation/metabolism
2.
Arterioscler Thromb Vasc Biol ; 43(6): e190-e209, 2023 06.
Article in English | MEDLINE | ID: mdl-37051927

ABSTRACT

BACKGROUND: Abnormal placental angiogenesis is an important cause of fetal intrauterine growth restriction (IUGR), but its underlying mechanisms and therapies remain unclear. Adenosine and its mediated signaling has been reported to be associated with the development of angiogenesis. However, whether the adenosine-related signaling plays a role in modulating angiogenesis in placenta and the IUGR pregnancy outcomes remains unclear. METHODS: The angiogenesis and adenosine signaling expressions in normal and IUGR placentas were detected in different species. And the role of adenosine in regulating IUGR pregnancy outcomes was evaluated using diet-induced IUGR mouse model. Molecular mechanisms underlying adenosine-induced angiogenesis were investigated by in vitro angiogenesis assays and in vivo Matrigel plug assays. RESULTS: Here, we demonstrated poor angiogenesis and low adenosine concentration and downregulated expression of its receptor A2a (ADORA2A [adenosine A2a receptor]) in IUGR placenta. Additionally, the beneficial effects of adenosine in improving IUGR pregnancy outcomes were revealed in a diet-induced IUGR mouse model. Moreover, adenosine was found to effectively improve adenosine signaling and angiogenesis in IUGR mice placenta. Mechanistically, by using angiogenesis assays in vitro and in vivo, adenosine was shown to activate ADORA2A to promote the phosphorylation of Stat3 (signal transducer and activator of transcription 3) and Akt (protein kinase B), resulting in increased Ang (angiogenin)-dependent angiogenesis. CONCLUSIONS: Collectively, this study uncovers an unexpected mechanism of promoting placental angiogenesis by adenosine-ADORA2A signaling and advances the translation of this signaling as a prognostic indicator and therapeutic target in IUGR treatment.


Subject(s)
Placenta , Proto-Oncogene Proteins c-akt , Animals , Female , Humans , Mice , Pregnancy , Fetal Growth Retardation/chemically induced , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Adenosine A2A/metabolism , STAT3 Transcription Factor/metabolism
3.
J Adv Res ; 51: 59-72, 2023 09.
Article in English | MEDLINE | ID: mdl-36372205

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW: This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.


Subject(s)
Gastrointestinal Microbiome , Premature Birth , Infant , Female , Child , Infant, Newborn , Humans , Dysbiosis/therapy , Infant, Premature , Gastrointestinal Tract
4.
Int J Mol Sci ; 21(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941102

ABSTRACT

Previous studies have suggested that immune system development and weaning stress are closely related to the maturation of gut microbiota. The early-life period is a "window of opportunity" for microbial colonization, which potentially has a critical impact on the development of the immune system. Fecal microbiota transplantation (FMT) and probiotics are often used to regulate gut microbial colonization. This study aims to test whether early intervention with FMT using fecal microbiota from gestation sows combined with Clostridium butyricum and Saccharomyces boulardii (FMT-CS) administration could promote the maturation of gut microbiota and development of immune system in piglets. Piglets were assigned to control (n = 84) and FMT-CS treatment (n = 106), which were treated with placebo and bacterial suspension during the first three days after birth, respectively. By 16S rRNA gene sequencing, we found that FMT-CS increased the α-diversity and reduced the unweighted UniFrac distances of the OTU community. Besides, FMT-CS increased the relative abundance of beneficial bacteria, while decreasing that of opportunistic pathogens. FMT-CS also enhanced the relative abundance of genes related to cofactors and vitamin, energy, and amino acid metabolisms during the early-life period. ELISA analysis revealed that FMT-CS gave rise to the plasma concentrations of IL-23, IL-17, and IL-22, as well as the plasma levels of anti-M.hyo and anti-PCV2 antibodies. Furthermore, the FMT-CS-treated piglets showed decreases in inflammation levels and oxidative stress injury, and improvement of intestinal barrier function after weaning as well. Taken together, our results suggest that early-life intervention with FMT-CS could promote the development of innate and adaptive immune system and vaccine efficacy, and subsequently alleviate weaning stress through promoting the maturation of gut microbiota in piglets.


Subject(s)
Clostridium butyricum/immunology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/immunology , Probiotics/pharmacology , Saccharomyces boulardii/immunology , Stress, Physiological , Animals , Animals, Newborn , Cytokines/immunology , Stress, Physiological/drug effects , Stress, Physiological/immunology , Swine , Weaning
5.
Animals (Basel) ; 9(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835513

ABSTRACT

With recent bans on the growth-promoting use of antibiotics, alternative strategies are needed to improve the performance of agricultural animals. Here, the effects of dietary supplementation with Clostridium butyricum and a combination of Saccharomyces boulardii and Pediococcus acidilactici were assessed on laying performance, egg quality, oxidative status, and gut health in laying hens. A total of 8208 Lohmann pink laying hens were divided into 3 treatment groups, with each group replicated 12 times (n = 228). Hens in the control group (CON) were provided a basic diet devoid of added antibiotics and probiotics. Treatment group 1 (T1) received the same base diet supplemented with 0.5 g/kg C. butyricum, and the diets of treatment group 2 (T2) supplemented with S. boulardii (0.05 g/kg) and P. acidilactici (0.1 g/kg) for the entirety of the 5-week trial. The data indicated that C. butyricum supplementation resulted in a significant reduction in ADFI, a significant increase in feed conversion, eggshell strength, and the CP% of albumen (dry matter, DM) relative to CON. The probiotic-treated hens exhibited decreased reactive oxygen species (ROS) levels in ileum and cecum, and reduced malondialdehyde (MDA) in serum. In conclusion, dietary supplementation with C. butyricum may be beneficial with respect to hen performance, egg quality, and gut health.

6.
Br J Nutr ; 117(7): 911-922, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28446262

ABSTRACT

Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Anabolic Agents/administration & dosage , Diet, Protein-Restricted/veterinary , Muscle Development , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Up-Regulation , Amino Acids/blood , Amino Acids/metabolism , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/metabolism , Anabolic Agents/blood , Anabolic Agents/metabolism , Animals , China , Crosses, Genetic , Diet, Protein-Restricted/adverse effects , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Hindlimb , Indicator Dilution Techniques , Keto Acids/blood , Keto Acids/metabolism , Male , Metabolomics/methods , Methylhistidines/blood , Methylhistidines/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/growth & development , Orchiectomy/veterinary , Regional Blood Flow , Sus scrofa , Weight Gain
7.
Nutrients ; 9(1)2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28036018

ABSTRACT

Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses-fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in piglets. The effect of BCAA supplementation on muscle protein synthesis is associated with the increase in protein degradation and KIC production in the fed state.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Diet, Protein-Restricted , Dietary Supplements , Fasting , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Amino Acids, Branched-Chain/blood , Animals , Insulin/blood , Keto Acids/blood , Leucine/blood , Phosphorylation , Protein Biosynthesis , Swine , p-Aminohippuric Acid/blood
8.
Mol Cell Endocrinol ; 434: 1-13, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27302893

ABSTRACT

Numerous researches have demonstrated that GPR120 (also called FFAR4) exerts novel functions in insulin resistance and adipogenesis. However, the molecular mechanism of GPR120-mediated adipogenic differentiation is still unclear. This study was aimed to interpret the relevant function mechanism of GPR120 in the differentiation of 3T3-L1 adipocytes. The results showed that GPR120 expression was dramatically increased along with the adipogenic differentiation of 3T3-L1 adipocytes and the adipogenic ability was significantly inhibited in shGPR120-transfected cells. TUG-891, a selective agonist of GPR120, promoted the intracellular triglyceride accumulation in a dose-dependent manner and did not enhance adipogenesis in shGPR120-transfected cells. Markedly, TUG-891 increased the activation of PPARγ in a GPR120-dependent pathway as assessed by luciferase reporter assay. Furthermore, in the adipogenic differentiation process of 3T3-L1 adipocytes, TUG-891 increased the [Ca(2+)]i and phosphorylation level of ERK1/2. Pretreatment with inhibitors of either ERK1/2 (U0126) or [Ca(2+)]i (BAPTA-AM) notably attenuated the GPR120-mediated adipogenesis. These results show that GPR120 promotes adipogenesis by increasing PPARγ expression via [Ca(2+)]i and ERK1/2 signal pathway in 3T3-L1 adipocytes.


Subject(s)
Adipogenesis , Calcium/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Adipogenesis/drug effects , Animals , Biphenyl Compounds/pharmacology , Cell Differentiation , Gene Knockdown Techniques , MAP Kinase Signaling System , Mice , PPAR gamma/metabolism , Phenylpropionates/pharmacology , Phosphorylation , Receptors, G-Protein-Coupled/antagonists & inhibitors
9.
J Vet Med Sci ; 78(9): 1487-1494, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27301842

ABSTRACT

This experiment was conducted to evaluate the effects of quercetin supplementation on intestinal integrity, intestinal reactive oxygen species (ROS) levels and intestinal inflammation in pigs under transport stress. A total of 170 finishing pigs were randomly assigned into two groups. Animals in the control group consumed a basal diet, while those in the treatment group consumed the same diet supplemented with 25 mg quercetin per kg feed. After a 4-week period, pigs were transported for 5 hr. The quercetin-supplemented pigs showed decreased serum levels of endotoxin (P<0.05), increased height of jejunum villi (P<0.05), and increased occludin and zonula occudens-1 (ZO-1) mRNA expression in the jejunum (P<0.05). These parameters are associated with intestinal health and were markedly improved by quercetin supplementation. Pigs consuming the quercetin-supplemented diet had lower intestinal levels of ROS and malondialdehyde (MDA) compared with the control group (P<0.05). This finding coincided with greater inhibition of the innate immune system (P<0.05), including mitogen-activated protein kinase (MAPK), protein kinase B (Akt) and nuclear factor κB (NF-κB) signaling pathways, as well as decreased expression of inflammatory cytokines in the jejunum. These results indicate that quercetin alleviates intestinal injury in pigs during transport, probably through modulation of intestinal oxidative status and inflammation.


Subject(s)
Antioxidants/therapeutic use , Inflammation/veterinary , Intestines/drug effects , Oxidative Stress/drug effects , Quercetin/therapeutic use , Swine Diseases/prevention & control , Animal Husbandry/methods , Animals , Dietary Supplements , Inflammation/prevention & control , Intestines/chemistry , Malondialdehyde/analysis , Occludin/analysis , Reactive Oxygen Species/analysis , Swine , Transportation , Zonula Occludens-1 Protein/analysis
10.
Biomed Res Int ; 2016: 5436738, 2016.
Article in English | MEDLINE | ID: mdl-27314026

ABSTRACT

Oregano essential oil (OEO) has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P < 0.05) endotoxin level in serum and increased (P < 0.05) villus height and expression of occludin and zonula occludens-1 (ZO-1) in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P < 0.05) population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P < 0.05) of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor κB (NF-κB) signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs.


Subject(s)
Bacteria/metabolism , Gene Expression Regulation/drug effects , Intestinal Mucosa , Intestines , Occludin/biosynthesis , Oils, Volatile/pharmacology , Origanum/chemistry , Tight Junctions/metabolism , Zonula Occludens-1 Protein/biosynthesis , Animals , Intestinal Mucosa/metabolism , Intestines/microbiology , Oils, Volatile/chemistry , Swine
11.
Br J Nutr ; 115(12): 2236-45, 2016 06.
Article in English | MEDLINE | ID: mdl-27079773

ABSTRACT

The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth performance in piglets.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , Diet, Protein-Restricted , Dietary Supplements , Eating/drug effects , Energy Intake/drug effects , Muscles/drug effects , Swine/growth & development , Animal Feed , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Appetite/genetics , Brain/metabolism , Male , Muscles/metabolism , Random Allocation , Weaning , Weight Gain
12.
Vet Immunol Immunopathol ; 158(3-4): 182-8, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24507560

ABSTRACT

Toll-like receptor 4 (TLR4) has been suggested to play a regulatory role in immune cell development; however, studies regarding the role of TLR4 in the development of the chick thymus are scarce. In this study, we investigated the distribution and expression pattern of TLR4 in normal chick thymi at different stages of development, in order to better understand the role of TLR4 in chick thymus development. We studied the thymi from 15 chicks, collected at days 7, 21 and 35 of age. The relative change in TLR4 mRNA expression in the chick thymus at different ages was determined by quantitative real-time PCR, and changes in protein expression were analyzed by immunohistochemistry and Western blotting. Furthermore, the distribution of TLR4 in the chick thymus was analyzed by immunohistochemistry, and compared with the distribution of TLR4 expression in juvenile female pigs (gilts). Our results indicated that TLR4 was constitutively expressed in the chick thymus. TLR4 was primarily expressed in the thymic cortico-medullary junction and the medulla, particularly in the epithelial cells of Hassall's corpuscles. The mRNA and protein expression level of TLR4 increased in the thymus with increasing age (p<0.05). Taken together, these results indicate that TLR4 is constitutively expressed by epithelial cells in the chick thymus, suggesting it may participate in thymic development by inducing factors affecting its development.


Subject(s)
Avian Proteins/immunology , Avian Proteins/metabolism , Thymus Gland/growth & development , Thymus Gland/immunology , Toll-Like Receptor 4/metabolism , Animals , Avian Proteins/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Developmental , Immunohistochemistry , Keratins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Species Specificity , Sus scrofa/genetics , Sus scrofa/immunology , Thymus Gland/cytology , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...