Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1400912, 2024.
Article in English | MEDLINE | ID: mdl-38720881

ABSTRACT

The rehabilitation robot can assist hemiplegic patients to complete the training program effectively, but it only focuses on helping the patient's training process and requires the rehabilitation therapists to manually adjust the training parameters according to the patient's condition. Therefore, there is an urgent need for intelligent training prescription research of rehabilitation robots to promote the clinical applications. This study proposed a decision support system for the training of upper limb rehabilitation robot based on hybrid reasoning with rule-based reasoning (RBR) and case-based reasoning (CBR). The expert knowledge base of this system is established base on 10 professional rehabilitation therapists from three different rehabilitation departments in Shanghai who are enriched with experiences in using desktop-based upper limb rehabilitation robot. The rule-based reasoning is chosen to construct the cycle plan inference model, which develops a 21-day training plan for the patients. The case base consists of historical case data from 54 stroke patients who underwent rehabilitation training with a desktop-based upper limb rehabilitation robot. The case-based reasoning, combined with a Random Forest optimized algorithm, was constructed to adjust the training parameters for the patients in real-time. The system recommended a rehabilitation training program with an average accuracy of 91.5%, an average AUC value of 0.924, an average recall rate of 88.7%, and an average F1 score of 90.1%. The application of this system in rehabilitation robot would be useful for therapists.

2.
Front Vet Sci ; 9: 922516, 2022.
Article in English | MEDLINE | ID: mdl-35812872

ABSTRACT

Wooden breast (WB) is a widely prevalent myopathy in broiler chickens. However, the role of the gut microbiota in this myopathy remains largely unknown, in particular the regulatory effect of gut microbiota in the modulation of muscle metabolism. Totally, 300 1-day-old Arbor Acres broilers were raised until 49 days and euthanized, and the breast filets were classified as normal (NORM), mild (MILD), or severe wooden breast (SEV). Birds with WB comprised 27.02% of the individuals. Severe WB filets had a greater L* value, a* value, and dripping loss but a lower pH (P < 0.05). WB filets had abundant myofiber fragmentation, with a lower average myofiber caliber and more fibers with a diameter of <20 µm (P < 0.05). The diversity of the intestinal microflora was decreased in birds with severe WB, with decreases in Chao 1, and observed species indices. At the phylum level, birds with severe WB had a lower Firmicutes/Bacteroidetes ratio (P = 0.098) and a decreased abundance of Verrucomicrobia (P < 0.05). At the species level, gut microbiota were positively correlated with 131 digesta metabolites in pathways of glutamine and glutamate metabolism and arginine biosynthesis but were negatively correlated with 30 metabolites in the pathway of tyrosine metabolism. In plasma, WB induced five differentially expressed metabolites (DEMs), including anserine and choline, which were related to the severity of the WB lesion. The microbial-derived metabolites, including guanidoacetic acid, antiarol, and (2E)-decenoyl-ACP, which entered into plasma were related to meat quality traits and myofiber traits. In summary, WB filets differed in gut microbiota, digesta, and plasma metabolites. Gut microbiota respond to the wooden breast myopathy by driving dynamic changes in digesta metabolites that eventually enter the plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...