Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(24): e2401172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483347

ABSTRACT

Photosynthetic microalgae produce valuable metabolites and are a source of sustainable food that supports life without compromising arable land. However, the light self-shading, excessive water supply, and insufficient space utilization in microalgae farming have limited its potential in the inland areas most in need of regenerative food solutions. Herein, this work develops a 3D polysaccharide-based hydrogel scaffold for vertically farming microalgae without needing liquid media. This liquid-free strategy is compatible with diverse microalgal species and enables the design of living microalgal frameworks with customizable architectures that enhance light and water utilization. This approach significantly increases microalgae yield per unit water consumption, with an 8.8-fold increase compared to traditional methods. Furthermore, the dehydrated hydrogels demonstrate a reduced size and weight (≈70% reduction), but readily recover their vitality upon rehydration. Importantly, valuable natural products can be produced in this system including proteins, carbohydrates, lipids, and carotenoids. This study streamlines microalgae regenerative farming for low-carbon biomanufacturing by minimizing light self-shading, relieving water supply, and reducing physical footprints, and democratizing access to efficient aquatic food production.


Subject(s)
Hydrogels , Microalgae , Microalgae/metabolism , Hydrogels/chemistry , Water/chemistry , Polysaccharides/chemistry , Photosynthesis
2.
J Hazard Mater ; 439: 129575, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35863230

ABSTRACT

Cadmium pollution is a serious threat for the global drink water and natural environment. Herein, a poly-pyrrole coated dual-metal perovskite-type oxide FeMnO3 (PFMO@PPy) was developed firstly as pseudocapacitive cathode for the reversible capture and release of cadmium ions by asymmetry pseudocapacitive deionization (APCDI) technology, extending the library of CDI electrodes. Our work highlighted several points: (i) PFMO@PPy achieved a maximum Cd-removal capacity of 144.6 mg g-1, and maintained the retention rate of 93.4% after 15-cycle CDI process for up to 150 h, far beyond other previous work. (ii) PFMO@PPy showed the superior removal ratio (~90%) under different real water environments such as tap water, lake water and the groundwater. (iii) The superior Cd(II) electrosorption and desorption behavior is ascribed to the reversible synergistic valence conversion (Fe3+/Fe0 and Mn3+/Mn2+), which is confirmed by ex-situ XPS measurement and electrochemical tests. (iv) DFT calculations confirmed the synergistic effect from Mn and Fe elements in perovskite-type bimetallic oxide FeMnO3. This study paves a new way for promising future applications of perovskite-type oxides containing dual Faradic redox-activity for wastewater treatment and environmental remediation.

3.
J Hazard Mater ; 431: 128591, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35247739

ABSTRACT

90Sr-containing radioactive wastewater during Fukushima nuclear accident (FNA) aroused extensive consideration for its disposal. Massive coexisted Na+ ions seriously inhibited Sr2+ removal, aggravating the expenditure of radioactive wastewater treatment. Herein, a chestnut shell derived porous carbon material modified with aryl diazonium salt (ADS) of sodium 4-aminoazobenzene-4'-sulfonate (SPAC) was developed as capacitive deionization electrode for selective removal of Sr2+ from saliferous radioactive wastewater. Based on ADS modification, the Sr2+ electrosorption capacity of SPAC electrode was improved to 33.11 mg g-1 with fast ion removal rate of 2.89 mg g-1 min-1, comparing with only 16.10 mg g-1 before modification. The isothermal adsorption and kinetics by SPAC electrode fitted well with Langmuir and pseudo-second-order model, achieving a maximum Sr2+ electrosorption capacity of 58.21 mg g-1, superior cycling stability, and excellent charge efficiency (77.63%). Fascinatingly, the SPAC electrode exhibited superhigh Sr2+ selectivity of 70.65 against Na+ in Na+-Sr2+ mixed solution with molar ratio of Na+:Sr2+ as 20:1. Density functional theory (DFT) simulation, combining with electrochemical and spectral analyses, revealed that the high overlap of electron cloud between Sr2+ ion and anionic sulfonic group (-SO3-) provided SPAC with remarkable selectivity of Sr2+ ion, and illustrated the ion-swapping mechanism of Sr2+ selectivity.


Subject(s)
Wastewater , Water Purification , Adsorption , Carbon , Electrodes , Ions
4.
ACS Appl Mater Interfaces ; 13(32): 38886-38896, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34374272

ABSTRACT

Pseudocapacitor-type hybrid capacitive deionization (PHCDI) has been developed extensively for deionization, which enables to address the worldwide freshwater shortage. However, the exploitation of selective hardness ion removal in resourceful hard water via the intrinsic pseudocapacitive effect, rather than the ion-sieving or ion-swapping effect based on the electric double layer (EDL) of porous carbon, is basically blank and urgent. Herein, manganese spinel ferrite (MFO) nanospheres were successfully fabricated by one-step solvothermal synthesis and used as the cathode for PHCDI assembled with commercial activated carbon. The MFO electrode exhibited prominent capacities of 534.6 µmol g-1 (CaCl2) and 980.4 µmol g-1 (MgCl2), outperforming those of other materials ever reported in the literature. Fascinatingly, systematic investigation of binary and ternary ion solutions showed the high electro-affinity of hardness ions (Ca2+ and Mg2+) toward Na+, especially the leading affinity of Mg2+, in which the superhigh hardness selectivity of 34.76 was achieved in the ternary solution with a molar ratio of Na-Ca-Mg as 20:1:1. Unexpectedly, the ion-swapping trace in a multi-ion environment was also first detected in our pseudocapacitive-based electrode. The electrochemical response in unary and multiple electrolytes disclosed that the unique pseudocapacitive affinity based on the cation (de)intercalation-redox mechanism was from the synergistic effect of the relative redox potential, ionic radius, and valence, in which the redox potential was the dominant factor.

SELECTION OF CITATIONS
SEARCH DETAIL
...