Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20537, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996568

ABSTRACT

Bacterial sulfate reduction (BSR) is one of the key factors leading to the anomalous accumulation of hydrogen sulphide in coal mines. Environmental factors such as temperature and pH play a crucial role in the metabolism and degradation of coal by sulfate-reducing bacteria (SRB). In this study, coal samples were selected from Shengli Coal Mine, and SRB strains were isolated and purified from mine water using a dilution spread-plate anaerobic cultivation method. Based on single-factor experiments and response surface methodology (RSM), the impact of temperature, pH, oxidation-reduction potential (ORP), chemical oxygen demand to sulfate ratio (COD/SO42-) on the generation of hydrogen sulphide during brown coal BSR was analyzed. The results showed that the anaerobic degradation of coal by SRB was inhibited by either too high or too low a temperature to produce hydrogen sulfide, and the greatest production of hydrogen sulfide occurred at a temperature of about 30 °C; The greatest production of hydrogen sulfide occurred at an initial ambient pH of 7.5; COD/SO42- ratio of around 2.0 is most conducive to hydrogen sulphide generation; the lower ORP value is more favorable for hydrogen sulfide generation. The optimal conditions obtained by RSM were: temperature of 30.37 °C, pH of 7.64 and COD/SO42- of 1.96. Under these conditions, the hydrogen sulfide concentration was 56.79 mg/L, the pH value was 8.40, the ORP value was -274 mV, and the SO42- utilization rate was 58.04%. The RSM results showed that temperature, ambient pH and COD/SO42- had a significant effect on hydrogen sulfide production, and the degree of effect was: ambient pH > temperature > COD/SO42-.


Subject(s)
Hydrogen Sulfide , Hydrogen , Sulfides , Bacteria/metabolism , Sulfates/metabolism , Coal , Bioreactors/microbiology
2.
Sci Adv ; 5(10): eaay0352, 2019 10.
Article in English | MEDLINE | ID: mdl-31692742

ABSTRACT

Boron carbide suffers from a loss of strength and toughness when subjected to high shear stresses due to amorphization. Here, we report that a small amount of Si doping (~1 atomic %) leads to a substantial decrease in stress-induced amorphization due to a noticeable change of the deformation mechanisms in boron carbide. In the undoped boron carbide, the Berkovich indentation-induced quasi-plasticity is dominated by amorphization and microcracking along the amorphous shear bands. This mechanism resulted in long, distinct, and single-variant shear faults. In contrast, substantial fragmentation with limited amorphization was activated in the Si-doped boron carbide, manifested by the short, diffuse, and multivariant shear faults. Microcracking via fragmentation competed with and subsequently mitigated amorphization. This work highlights the important roles that solute atoms play on the structural stability of boron carbide and opens up new avenues to tune deformation mechanisms of ceramics via doping.

3.
Adv Mater ; 31(48): e1904408, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31617644

ABSTRACT

To improve the photovoltaic performance (both efficiency and stability) in hybrid organic-inorganic halide perovskite solar cells, perovskite lattice distortion is investigated with regards to residual stress (and strain) in the polycrystalline thin films. It is revealed that residual stress is concentrated at the surface of the as-prepared film, and an efficient method is further developed to release this interfacial stress by A site cation alloying. This results in lattice reconstruction at the surface of polycrystalline thin films, which in turn results in low elastic modulus. Thus, a "bone-joint" configuration is constructed within the interface between the absorber and the carrier transport layer, which improves device performance substantially. The resultant photovoltaic devices exhibit an efficiency of 21.48% with good humidity stability and improved resistance against thermal cycling.

4.
iScience ; 15: 156-164, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31059998

ABSTRACT

The CsPbI3 inorganic perovskite is a potential candidate for fabricating long-term operational photovoltaic devices owing to its intrinsic superb thermal stability. However, the carbon-based CsPbI3 perovskite solar cells (C-PSCs) without hole transport material (HTM) are currently disadvantaged by their relatively low power conversion efficiency resulting from the poor grain quality and mismatched energy band levels of the as-made CsPbI3 films. Herein we demonstrate that by doping Na into the CsPbI3 lattice, the grain quality is significantly improved with low defect density, and also, the energy band levels are better matched to the contact electrodes, affording a higher built-in potential. Consequently, the Voc of the C-PSCs is drastically increased from 0.77 to 0.92 V, and the efficiency from 8.6% to 10.7%, a record value for the CsPbI3 PSCs without HTM. Moreover, the non-encapsulated device showed virtually no performance degradation after 70 days of storage in air atmosphere.

5.
Ultramicroscopy ; 195: 69-73, 2018 12.
Article in English | MEDLINE | ID: mdl-30195095

ABSTRACT

Twin boundary can both strengthen and soften nanocrystalline metals and has been an important path for improving the strength and ductility of nano materials. Here, using in-lab developed double-tilt tensile stage in the transmission electron microscope, the atomic scale twin boundary shearing process was in situ observed in a twin-structured nanocrystalline Pt. It was revealed that the twin boundary shear was resulted from partial dislocation emissions on the intersected {111} planes, which accommodate as large as 47% shear strain. It is uncovered that the partial dislocations nucleated and glided on the two intersecting {111} slip planes lead to a transition of the original <110> symmetric tilt ∑3/(111) coherent twin boundary into a <110> symmetric tilt ∑9/(114) high angle grain boundary. These results provide insight of twin boundary strengthening mechanisms for accommodating plasticity strains in nanocrystalline metals.

6.
Nanoscale ; 10(21): 9996-10004, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29774916

ABSTRACT

α-CsPbI3 with the most suitable band gap for all-inorganic perovskite solar cell (PSC) application faces an issue of phase instability at low temperature in an air atmosphere. Herein, through stoichiometric investigation, α-CsPbI3 is successfully obtained with excess CsI at 110 °C in an air atmosphere. By doping α-CsPbI3 with Sb, phase stability is further enhanced and the film morphology is also improved. Carbon-based perovskite solar cells (C-PSCs) based on CsPb0.96Sb0.04I3 achieve a promising power conversion efficiency (PCE) of 5.18%, a record value for α-CsPbI3-based PSCs without hole transport materials. Significantly, the CsPb0.96Sb0.04I3 C-PSCs retain 93% of the initial PCE after 37 days of storage in an air atmosphere. Therefore, the synergistic effect of non-stoichiometry and Sb-doping presents a promising strategy to design all-inorganic lead halide PSCs with high performance and stability.

7.
ACS Appl Mater Interfaces ; 8(49): 33649-33655, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960426

ABSTRACT

The device instability has been an important issue for hybrid organic-inorganic halide perovskite solar cells (PSCs). This work intends to address this issue by exploiting inorganic perovskite (CsPbBr3) as light absorber, accompanied by replacing organic hole transport materials (HTM) and the metal electrode with a carbon electrode. All the fabrication processes (including those for CsPbBr3 and the carbon electrode) in the PSCs are conducted in ambient atmosphere. Through a systematical optimization on the fabrication processes of CsPbBr3 film, carbon-based PSCs (C-PSCs) obtained the highest power conversion efficiency (PCE) of about 5.0%, a relatively high value for inorganic perovskite-based PSCs. More importantly, after storage for 250 h at 80 °C, only 11.7% loss in PCE is observed for CsPbBr3 C-PSCs, significantly lower than that for popular CH3NH3PbI3 C-PSCs (59.0%) and other reported PSCs, which indicated a promising thermal stability of CsPbBr3 C-PSCs.

8.
ACS Appl Mater Interfaces ; 8(44): 30184-30192, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27739309

ABSTRACT

Carbon-based hole transport material (HTM)-free perovskite solar cells (PSCs) have attracted intense attention due to their relatively high stability. However, their power conversion efficiency (PCE) is still low, especially for the simplest paintable carbon-based PSCs (C-PSCs), whose performance is greatly limited by poor contact at the perovskite/carbon interface. To enhance interface contact, it is important to fabricate an even-surface perovskite layer in a porous scaffold, which is not usually feasible due to roughness of the crystal precursor. Herein, colloidal engineering is applied to replace the traditional crystal precursor with a colloidal precursor, in which a small amount of dimethyl sulfoxide (DMSO) is added into the conventional PbI2 dimethylformamide (DMF) solution. After deposition, PbI2(DMSO) adduct colloids (which are approximately tens of nanometers in size) are stabilized and dispersed in DMF to form a colloidal film. Compared with PbI2 and PbI2(DMSO) adduct crystal precursors deposited from pure DMF and DMSO solvents, respectively, the PbI2(DMSO) adduct colloidal precursor is highly mobile and flexible, allowing an ultra-even surface to be obtained in a TiO2 porous scaffold. Furthermore, this ultra-even surface is well-maintained after chemical conversion to CH3NH3PbI3 in a CH3NH3I solution. As a result, the contact at the CH3NH3PbI3/carbon interface is significantly enhanced, which largely boosts the fill factor and PCE of C-PSCs. Impressively, the achieved champion PCE of 14.58% is among the highest reported for C-PSCs.

9.
Sci Rep ; 6: 22937, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26956918

ABSTRACT

With our recently developed deformation device, the in situ tensile tests of single crystal molybdenum nanowires with various size and aspect ratio were conducted inside a transmission electron microscope (TEM). We report an unusual ambient temperature (close to room temperature) super-plastic elongation above 127% on single crystal body-centred cubic (bcc) molybdenum nanowires with an optimized aspect ratio and size. A novel dislocation "bubble-like-effect" was uncovered for leading to the homogeneous, large and super-plastic elongation strain in the bcc Mo nanowires. The dislocation bubble-like-effect refers to the process of dislocation nucleation and annihilation, which likes the nucleation and annihilation process of the water bubbles. A significant plastic deformation dependence on the sample's aspect ratio and size was revealed. The atomic scale TEM observations also demonstrated that a single crystal to poly-crystal transition and a bcc to face-centred cubic phase transformation took place, which assisted the plastic deformation of Mo in small scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...