Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
FASEB J ; 38(10): e23655, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767449

ABSTRACT

The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Autophagy , Mesenchymal Stem Cells , Mitochondria , Myocytes, Cardiac , TOR Serine-Threonine Kinases , Myocytes, Cardiac/metabolism , Animals , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Mice , Humans , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Male , Doxorubicin/pharmacology , Mice, Inbred C57BL , Heart Failure/metabolism
2.
Oncogene ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778160

ABSTRACT

Angiogenesis is one of the characteristics of malignant tumors, and persistent generation of abnormal tumor blood vessels is an important factor contributing to tumor treatment resistance. Epstein-Barr virus (EBV) is a highly prevalent DNA oncogenic virus that is associated with the development of various epithelial malignancies. However, the relationship between EBV infection and tumor vascular abnormalities as well as its underlying mechanisms is still unclear. In this study, we found that compared to EBV-uninfected tumors, EBV-infected tumors were more angiogenic, but the neovascularization was mostly immature vessels without pericyte attachment in both clinical patient tumor samples and mouse xenograft models; These immature vessels exhibited aberrant functionality, characterized by poor blood perfusion and increased vascular permeability. The vascular abnormalities caused by EBV infection exacerbated tumor hypoxia and was responsible for accelerated tumor growth. Mechanistically, EBV infection upregulated ANXA3-HIF-1α-VEGF pathway. Silencing the ANXA3 gene or neutralizing ANXA3 with an antibody can diminish vascular abnormalities, thereby increasing immune cell infiltration and alleviating treatment resistance. Finally, a new therapy combining ANXA3 blockade and NK cell + PD1 antibody significantly inhibited the growth of EBV-infected xenografts in mice. In conclusion, our study identified a previously unrecognized role for EBV infection in tumor vascular abnormalities and revealed its underlying mechanism that upregulated the ANXA3-HIF-1α-VEGF pathway. ANXA3 is a potential therapeutic target for EBV-infected tumors and ANXA3 blockade to improve vascular conditions, in combination with NK cell + PD1 antibody therapy, holds promise as an effective treatment strategy for EBV-associated epithelial malignancies.

3.
Plant Physiol Biochem ; 211: 108716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744087

ABSTRACT

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (H2O2) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.


Subject(s)
Freezing , Polystyrenes , Secale , Seedlings , Seedlings/drug effects , Seedlings/metabolism , Polystyrenes/toxicity , Secale/drug effects , Secale/metabolism , Peroxidase/metabolism , Catalase/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Malondialdehyde/metabolism
4.
Mol Cancer Ther ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647536

ABSTRACT

Hepatocellular carcinoma (HCC) has a pathogenesis that remains elusive with restricted therapeutic strategies and efficacy. This study aimed to investigate the role of SMG5, a crucial component in nonsense-mediated mRNA decay (NMD) that degrades mRNA containing a premature termination codon (PTC), in HCC pathogenesis and therapeutic resistance. We demonstrated an elevated expression of SMG5 in HCC and scrutinized its potential as a therapeutic target. Our findings revealed that SMG5 knockdown not only inhibited the migration, invasion, and proliferation of HCC cells but also influenced sorafenib resistance. Differential gene expression analysis between the control and SMG5 knockdown groups showed an upregulation of MAT1A in the latter. High expression of MAT1A, a catalyst for S-adenosylmethionine (SAM) production, as suggested by TCGA data, was indicative of a better prognosis for HCC. Further, an enzyme-linked immunosorbent assay showed a higher concentration of SAM in SMG5 knockdown cell supernatants. Furthermore, we found that exogenous SAM supplementation enhanced the sensitivity of HCC cells to sorafenib alongside changes in the expression of Bax and Bcl 2, apoptosis-related proteins. Our findings underscore the important role of SMG5 in HCC development and its involvement in sorafenib resistance, highlighting it as a potential target for HCC treatment.

5.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565886

ABSTRACT

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Oxaloacetates , Humans , Bevacizumab/therapeutic use , Capecitabine/therapeutic use , Oxaliplatin , Colorectal Neoplasms/drug therapy , Fluorouracil/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Immunotherapy
6.
iScience ; 27(3): 109245, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439973

ABSTRACT

The main causes of death in patients with ovarian cancer (OC) are invasive lesions and the spread of metastasis. The present study aimed to explore the mechanisms that might promote OC metastasis. Here, we identified that VGLL1 expression was remarkably increased in metastatic OC samples. The role of VGLL1 in OC metastasis and tumor growth was examined by cell function assays and mouse models. Mechanistically level, METTL3-mediated N6-methyladenosine (m6A) modification contributed to VGLL1 upregulation in an IGF2BP2 recognition-dependent manner. Furthermore, VGLL1 directly interacts with TEAD4 and co-transcriptionally activates HMGA1. HMGA1 further activates Wnt/ß-catenin signaling to enhance OC metastasis by promoting the epithelial-mesenchyme transition traits. Rescue assays indicated that the upregulation of HMGA1 was essential for VGLL1-induced metastasis. Collectively, these findings showed that the m6A-induced VGLL1/HMGA1/ß-catenin axis might play a vital role in OC metastasis and tumor growth. VGLL1 might serve as a prognostic marker and therapeutic target against the metastasis of OC.

7.
Cancer Res ; 84(10): 1613-1629, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38381538

ABSTRACT

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFß1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFß1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFß1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Extracellular Traps , Liver Neoplasms , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Extracellular Traps/immunology , Extracellular Traps/metabolism , Transforming Growth Factor beta1/metabolism , Neutrophils/immunology , Neutrophils/metabolism , DNA/immunology , DNA/metabolism , Mice, Inbred C57BL , Mice, Knockout , Cell Line, Tumor , Male
9.
Front Immunol ; 14: 1212577, 2023.
Article in English | MEDLINE | ID: mdl-37545530

ABSTRACT

Introduction: The limited response to immune checkpoint blockades (ICBs) in patients with hepatocellular carcinoma (HCC) highlights the urgent need for broadening the scope of current immunotherapy approaches. Lenvatinib has been shown a potential synergistic effect with ICBs. This study investigated the optimal method for combining these two therapeutic agents and the underlying mechanisms. Methods: The effect of lenvatinib at three different doses on promoting tissue perfusion and vascular normalization was evaluated in both immunodeficient and immunocompetent mouse models. The underlying mechanisms were investigated by analyzing the vascular morphology of endothelial cells and pericytes. The enhanced immune infiltration of optimal-dose lenvatinib and its synergistic effect of lenvatinib and anti-PD-1 antibody was further evaluated by flow cytometry and immunofluorescence imaging. Results: There was an optimal dose that superiorly normalized tumor vasculature and increased immune cell infiltration in both immunodeficient and immunocompetent mouse models. An adequate concentration of lenvatinib strengthened the integrity of human umbilical vein endothelial cells by inducing the formation of the NRP-1-PDGFRß complex and activating the Crkl-C3G-Rap1 signaling pathway in endothelial cells. Additionally, it promoted the interaction between endothelial cells and pericytes by inducing tyrosine-phosphorylation in pericytes. Furthermore, the combination of an optimal dose of lenvatinib and an anti-PD-1 antibody robustly suppressed tumor growth. Conclusions: Our study proposes a mechanism that explains how the optimal dose of lenvatinib induces vascular normalization and confirms its enhanced synergistic effect with ICBs.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Antineoplastic Agents/therapeutic use , Liver Neoplasms/pathology , Endothelial Cells/metabolism , Disease Models, Animal
10.
BMC Med ; 21(1): 327, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37635247

ABSTRACT

BACKGROUND: CD133 is considered a marker for cancer stem cells (CSCs) in several types of tumours, including hepatocellular carcinoma (HCC). Chimeric antigen receptor-specific T (CAR-T) cells targeting CD133-positive CSCs have emerged as a tool for the clinical treatment of HCC, but immunogenicity, the high cost of clinical-grade recombinant viral vectors and potential insertional mutagenesis limit their clinical application. METHODS: CD133-specific CAR-T cells secreting PD-1 blocking scFv (CD133 CAR-T and PD-1 s cells) were constructed using a sleeping beauty transposon system from minicircle technology, and the antitumour efficacy of CD133 CAR-T and PD-1 s cells was analysed in vitro and in vivo. RESULTS: A univariate analysis showed that CD133 expression in male patients at the late stage (II and III) was significantly associated with worse progression-free survival (PFS) (P = 0.0057) and overall survival (OS) (P = 0.015), and a multivariate analysis showed a trend toward worse OS (P = 0.041). Male patients with advanced HCC exhibited an approximately 20-fold higher PD-L1 combined positive score (CPS) compared with those with HCC at an early stage. We successfully generated CD133 CAR-T and PD-1 s cells that could secrete PD-1 blocking scFv based on a sleeping beauty system involving minicircle vectors. CD133 CAR-T and PD-1 s cells exhibited significant antitumour activity against HCC in vitro and in xenograft mouse models. Thus, CD133 CAR-T and PD-1 s cells may be a therapeutically tractable strategy for targeting CD133-positive CSCs in male patients with advanced HCC. CONCLUSIONS: Our study provides a nonviral strategy for constructing CAR-T cells that could also secrete checkpoint blockade inhibitors based on a Sleeping Beauty system from minicircle vectors and revealed a potential benefit of this strategy for male patients with advanced HCC and high CD133 expression (median immunohistochemistry score > 2.284).


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Chimeric Antigen , Humans , Male , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen/genetics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Disease Models, Animal , T-Lymphocytes
11.
China CDC Wkly ; 5(26): 572-578, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37457850

ABSTRACT

What is already known about this topic?: In December 2022, China revised its epidemic prevention and control strategy, leading to an increase in coronavirus disease 2019 (COVID-19) cases and a peak in medical consultations. Government departments implemented relevant policies to coordinate and allocate medical resources throughout China. However, there is a scarcity of research on the status of medical consultations and the factors influencing them. What is added by this report?: In the study population, over 80% of individuals with COVID-19 chose not to pursue medical care, while more than 70% of patients who sought treatment opted for primary healthcare facilities. The decision to consult medical professionals was influenced by various factors, such as age, education level, employment status, urban-rural distribution, and the presence of symptoms following COVID-19 infection. What are the implications for public health practice?: The implementation of tiered diagnostic and treatment approaches, aligned with guidelines issued by governing bodies, is essential for mitigating the strain on medical resources. Primary healthcare institutions serve as "gatekeepers" for public health and should be further expanded in the future.

13.
Clin Transl Med ; 13(5): e1247, 2023 05.
Article in English | MEDLINE | ID: mdl-37132170

ABSTRACT

BACKGROUND: In the past decade, the field of tumour immunotherapy has made a great progress. However, the efficacy of immune checkpoint blocking (ICB) in the treatment of hepatocellular carcinoma (HCC) remains limited. Cytotoxic lymphocyte trafficking into tumours is critical for the success of ICB. Therefore, additional strategies that increase cytotoxic lymphocyte trafficking into tumours are urgently needed to improve patient immune responses. METHODS: Paired adjacent tissue and cancerous lesions with HBV-associated HCC were subjected to RNA-seq analysis. Bone morphogenetic protein (BMP9), which reflects vessel normalisation, was identified through Cytoscape software, clinical specimens and Gene Expression Omnibus (GEO) datasets for HCC. The functional effects and mechanism of BMP9 on the tumour vasculature were evaluated in cells and animals. An ultrasound-targeted microbubble destruction (UTMD)-mediated BMP9 delivery strategy was used to normalise the vasculature and evaluate therapeutic efficacy mediated by cytotoxic lymphocytes (NK cells) in combination with a PD-L1 antibody in human cancer xenografts of immune-deficient mice. RESULTS: We discovered that hepatitis B virus (HBV) infection-induced downregulation of BMP9 expression correlated with a poor prognosis and pathological vascular abnormalities in patients with HCC. BMP9 overexpression in HBV-infected HCC cells promoted intra-tumoural cytotoxic lymphocyte infiltration via vascular normalisation by inhibiting the Rho-ROCK-myosin light chain (MLC) signalling cascade, resulting in enhanced efficacy of immunotherapy. Furthermore, UTMD-mediated BMP9 delivery restored the anti-tumour function of cytotoxic lymphocytes (NK cells) and showed therapeutic efficacy in combination with a PD-L1 antibody in human cancer xenografts of immune-deficient mice. CONCLUSIONS: HBV-induced BMP9 downregulation causes vascular abnormalities that inhibit intra-tumoural cytotoxic lymphocyte infiltration, providing a rationale for developing and combining immunotherapy with BMP9-based therapy to treat HBV-associated HCC.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , B7-H1 Antigen , Bone Morphogenetic Proteins/therapeutic use , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Hepatitis B/complications , Hepatitis B virus/genetics , Immunotherapy/methods , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy
15.
Theranostics ; 13(5): 1649-1668, 2023.
Article in English | MEDLINE | ID: mdl-37056569

ABSTRACT

Rationale: Resistance to 5-fluorouracil (5-FU) chemotherapy remains the main barrier to effective clinical outcomes for patients with colorectal cancer (CRC). A better understanding of the detailed mechanisms underlying 5-FU resistance is needed to increase survival. Interleukin (IL)-33 is a newly discovered alarmin-like molecule that exerts pro- and anti-tumorigenic effects in various cancers. However, the precise role of IL-33 in CRC progression, as well as in the development of 5-FU resistance, remains unclear. Methods: High-quality RNA-sequencing analyses were performed on matched samples from patients with 5-FU-sensitive and 5-FU-resistant CRC. The clinical and biological significance of IL-33, including its effects on both T cells and tumor cells, as well as its relationship with 5-FU chemotherapeutic activity were examined in ex vivo, in vitro and in vivo models of CRC. The molecular mechanisms underlying these processes were explored. Results: IL-33 expressed by tumor cells was a dominant mediator of antitumoral immunity in 5-FU-sensitive patients with CRC. By binding to its ST2 receptor, IL-33 triggered CD4+ (Th1 and Th2) and CD8+ T cell responses by activating annexin A1 downstream signaling cascades. Mechanistically, IL-33 enhanced the sensitivity of CRC cells to 5-FU only in the presence of T cells, which led to the activation of both tumor cell-intrinsic apoptotic and immune killing-related signals, thereby synergizing with 5-FU to induce apoptosis of CRC cells. Moreover, injured CRC cells released more IL-33 and the T cell chemokines CXCL10 and CXCL13, forming a positive feedback loop to further augment T cell responses. Conclusions: Our results identified a previously unrecognized connection between IL-33 and enhanced sensitivity to 5-FU. IL-33 created an immune-active tumor microenvironment by orchestrating antitumoral T cell responses. Thus, IL-33 is a potential predictive biomarker for 5-FU chemosensitivity and favorable prognosis and has potential as a promising adjuvant immunotherapy to improve the clinical benefits of 5-FU-based therapies in the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Alarmins/therapeutic use , Colorectal Neoplasms/pathology , Interleukin-33 , Cell Line, Tumor , Drug Resistance, Neoplasm , Tumor Microenvironment
16.
Cancer Immunol Res ; 11(6): 830-846, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36996321

ABSTRACT

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy characterized by the presence of prominent infiltration of lymphocytes, including natural killer (NK) cells. Although NK cells can directly target EBV-infected tumor cells without restriction by the MHC, EBV-positive (EBV+) NPC cells often develop resistance mechanisms that allow them to evade immune surveillance by NK cells. Elucidating the mechanisms involved in EBV-induced NK-cell dysfunction will contribute to the design of novel NK cell-based immunotherapies to treat NPC. Herein, we confirmed that the cytotoxic function of NK cells was impaired in EBV+ NPC tissues and found that EBV infection-induced expression of B7-H3 in NPC negatively correlated with NK-cell function. The inhibitory effect of EBV+ tumor expression of B7-H3 on NK-cell function was clarified in vitro and in vivo. Mechanistically, activation of the PI3K/AKT/mTOR signaling pathway via EBV latent membrane protein 1 (LMP1) was responsible for EBV infection-induced upregulation of B7-H3 expression. In an NPC xenograft mouse model with adoptive transfer of primary NK cells, deletion of B7-H3 on tumor cells in combination with anti-PD-L1 treatment restored NK cell-mediated antitumor activity and significantly improved the antitumor efficacy of NK cells. On the basis of our findings, we conclude that EBV infection can inhibit NK cell-mediated antitumor function by inducing upregulation of B7-H3 expression and provide a rationale for NK cell-based immunotherapies in combination of PD-L1 blockade and overcoming the immunosuppression of B7-H3 to treat EBV-associated NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Animals , Mice , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Transcription Factors/metabolism , Killer Cells, Natural/metabolism
17.
Dig Dis Sci ; 68(7): 3185-3192, 2023 07.
Article in English | MEDLINE | ID: mdl-36715817

ABSTRACT

BACKGROUND AND AIMS: The selection of appropriate candidates for transjugular intrahepatic portosystemic shunt (TIPS) is important and challenging. To validate the Model for End-Stage Liver Disease (MELD) 3.0 in predicting mortality in patients with cirrhosis after TIPS creation. METHODS: A total of 855 consecutive patients with cirrhosis from December 2011 to October 2019 who underwent TIPS placement were retrospectively reviewed. The prognostic value of the MELD 3.0, MELD, MELD-Na, Child-Pugh and FIPS score was assessed using Harrell's C concordance index (c-index). The Hosmer-Lemeshow test was used to test the goodness of fit of all models and the calibration plot was drawn. RESULTS: The c-index of the MELD 3.0 in predicting 3-month mortality was 0.727 (0.645-0.808), which were significantly superior to the MELD (0.663 [0.565-0.761]; P = 0.015), MELD-Na (0.672 [0.577-0.768]; P = 0.008) and FIPS (0.582 [0.477-0.687]; P = 0.015). The Child-Pugh score reached c-indices of 0.754 (0.673-0.835), 0.720 (0.649-0.792), 0.705 (0.643-0.766) and 0.665 (0.614-0.716) for 3-month, 6-month, 1-year, and 2-year mortality, respectively, which seems comparable to MELD 3.0. A MELD 3.0 of 14 could be used as a cut-off point for discriminating between high- and low-risk patients. The MELD 3.0 could stratify patients with Child-Pugh grade B (log-rank P < 0.001). The Child-Pugh score could stratify patients defined as low risk by MELD 3.0 (log-rank P < 0.001). CONCLUSIONS: The MELD 3.0 was significantly superior to the MELD, MELD-Na and FIPS scores in predicting mortality in patients with cirrhosis after TIPS creation.


Subject(s)
End Stage Liver Disease , Portasystemic Shunt, Transjugular Intrahepatic , Humans , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects , Retrospective Studies , End Stage Liver Disease/diagnosis , End Stage Liver Disease/surgery , End Stage Liver Disease/etiology , Severity of Illness Index , Liver Cirrhosis/diagnosis , Liver Cirrhosis/surgery , Liver Cirrhosis/etiology , Treatment Outcome
18.
Front Immunol ; 13: 974487, 2022.
Article in English | MEDLINE | ID: mdl-36439119

ABSTRACT

Breast cancer is one of the most common cancers in women. Triple-negative breast cancer (TNBC) has a significantly worse prognosis due to the lack of endocrine receptors including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). In this study, we investigated adjuvant cellular immunotherapy (CIT) in patients with post-mastectomy breast cancer. We enrolled 214 post-mastectomy breast cancer patients, including 107 patients in the control group (who received chemotherapy/radiotherapy/endocrine therapy) and the other 107 patients in the CIT group (who received chemotherapy/radiotherapy/endocrine therapy and subsequent immune cell infusion). Of these 214 patients, 54 had TNBC, including 26 patients in the control group and 28 patients in the CIT group. Survival analysis showed that the overall survival rate of patients treated with cellular immunotherapy was higher than that of patients who were not treated with CIT. Compared to those who received cytokine-induced killer (CIK) cells alone, the patients who received CIK combined with natural killer (NK) cell immunotherapy showed the best overall survival rate. In subgroup analyses, adjuvant CIT significantly improved the overall survival of patients in the TNBC subgroup and the patients who were aged over 50 years. Our study indicates that adjuvant CIK cell combined with NK cell treatment is an effective therapeutic strategy to prolong the survival of post-mastectomy patients, particularly for TNBC patients and those who are aged over 50 years.


Subject(s)
Cytokine-Induced Killer Cells , Triple Negative Breast Neoplasms , Humans , Female , Middle Aged , Mastectomy , Triple Negative Breast Neoplasms/metabolism , Prognosis , Immunotherapy , Killer Cells, Natural/metabolism , Adjuvants, Pharmaceutic/therapeutic use , Immunologic Factors/therapeutic use , Adjuvants, Immunologic/therapeutic use
19.
J Exp Clin Cancer Res ; 41(1): 328, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36411454

ABSTRACT

BACKGROUND: Radioresistance is the primary cause of nasopharyngeal carcinoma (NPC) treatment failure. Previous studies have focused on the deficits in cellular apoptosis as a mechanism for radioresistance; however, additional potential death modes involved in modulating radiosensitivity of NPC have not been explored. METHODS: Pyroptosis was assessed by phase-contrast imaging, LDH release assays, live cell imaging, and Western blotting. In vitro and in vivo assays were used to investigate the function of gasdermin E (GSDME) and ovarian tumor family deubiquitinase 4 (OTUD4). NPC tissues were analyzed using Western blotting, immunohistochemistry, and real-time PCR. The molecular mechanism was determined using immunoprecipitation assays and mass spectrometry. RESULTS: Live cell imaging revealed that 40-75% of irradiation-induced dead NPC cells were pyroptotic cells. Furthermore, irradiation-induced pyroptosis is triggered by GSDME, which are cleaved by activated caspase-3 in the intrinsic mitochondrial pathway. Additionally, GSDME was significantly downregulated in radioresistant NPC specimens. Low GSDME expression was a predictor of worse prognosis and conferred NPC radioresistance both in vitro and in vivo. Mechanistically, OTUD4 deubiquitinated and stabilized GSDME, enhancing radiosensitivity of NPC cells by promoting pyroptosis. Clinically, OTUD4 was significantly correlated with GSDME in NPC biopsies, and patients with low expression of both OTUD4 and GSDME suffered the worst radiotherapy response and survival. CONCLUSIONS: GSDME-dependent pyroptosis is a critical determinant of radiosensitivity in NPC, and is modulated by OTUD4 via deubiquitinating and stabilizing GSDME. These findings reveal a promising novel direction to investigate radioresistance and suggest potential therapeutic targets for sensitizing NPC to radiotherapy.


Subject(s)
Nasopharyngeal Neoplasms , Ovarian Neoplasms , Female , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/radiotherapy , Pyroptosis/physiology , Cell Line, Tumor , Radiation Tolerance , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/metabolism , Ubiquitin-Specific Proteases
20.
Eur J Gastroenterol Hepatol ; 34(10): 1074-1080, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36062497

ABSTRACT

BACKGROUND AND AIMS: It is important and challenging to evaluate the survival of cirrhotic patients undergoing transjugular intrahepatic portosystemic shunt (TIPS). We aimed to validate the Freiburg index of post-TIPS survival (FIPS) score and classic scores for predicting mortality in Chinese patients after TIPS creation. METHODS: A total of 709 consecutive patients with cirrhosis from December 2011 to July 2018 who underwent TIPS placement were retrospectively reviewed. The prognostic value of the FIPS score, the model for end-stage liver disease (MELD) score, Child-Pugh score and Chronic Liver Failure Consortium Acute Decompensation score was validated with the receiver operating characteristic (ROC) curve and DeLong et al. test. RESULTS: The MELD-Na score was superior to the FIPS score in predicting 1-month mortality [AUROC, 0.727 (0.692-0.759) vs. 0.588 (0.551-0.625); P = 0.048]. The MELD and MELD-Na scores were significant superior to the FIPS score in predicting 3-month mortality [AUROC, 0.730 (0.696-0.762) vs. 0.598 (0.561-0.634); P = 0.044 and 0.740 (0.706-0.772) vs. 0.598 (0.561-0.634); P = 0.028]. Subgroup analyses revealed that Child-Pugh score was better than FIPS score in predicting 3-month mortality [AUROC, 0.797 (0.745-0.843) vs. 0.578 (0.517-0.637); P = 0.049] in nonviral cirrhosis group. CONCLUSION: Classic scores still had good risk stratification and predictive ability of post-TIPS mortality. The FIPS score was not superior to the classic scores in the current Chinese cohort. The MELD and MELD-Na scores were significantly superior to the FIPS score in predicting 3-month mortality.


Subject(s)
End Stage Liver Disease , Portasystemic Shunt, Transjugular Intrahepatic , China , Humans , Liver Cirrhosis , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects , Prognosis , Retrospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...