Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2019: 2564754, 2019.
Article in English | MEDLINE | ID: mdl-31814817

ABSTRACT

Artificial bee colony (ABC) has a good exploration ability against its exploitation ability. For enhancing its comprehensive performance, we proposed a multistrategy artificial bee colony (ABCVNS for short) based on the variable neighborhood search method. First, a search strategy candidate pool composed of two search strategies, i.e., ABC/best/1 and ABC/rand/1, is proposed and employed in the employed bee phase and onlooker bee phase. Second, we present another search strategy candidate pool which consists of the original random search strategy and the opposition-based learning method. Then, it is used to further balance the exploration and exploitation abilities in the scout bee phase. Last but not least, motivated by the scheme of neighborhood change of variable neighborhood search, a simple yet efficient choice mechanism of search strategies is presented. Subsequently, the effectiveness of ABCVNS is carried out on two test suites composed of fifty-eight problems. Furthermore, comparisons among ABCVNS and several famous methods are also carried out. The related experimental results clearly demonstrate the effectiveness and the superiority of ABCVNS.


Subject(s)
Algorithms , Animals , Bees , Behavior, Animal
2.
Comput Intell Neurosci ; 2015: 285730, 2015.
Article in English | MEDLINE | ID: mdl-26609304

ABSTRACT

Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions.


Subject(s)
Algorithms , Artificial Intelligence , Biological Evolution , Decision Support Techniques , Mutation , Computer Simulation , Humans , Pattern Recognition, Automated
SELECTION OF CITATIONS
SEARCH DETAIL
...