Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301097, 2024.
Article in English | MEDLINE | ID: mdl-38640138

ABSTRACT

As a new definition for the evidence of hepatic steatosis and metabolic dysfunctions, the relationship between phthalates (PAEs) and metabolic dysfunction-associated fatty liver disease (MAFLD) remains virtually unexplored. This study included 3,137 adults from the National Health and Nutrition Examination Survey spanning 2007-2018. The diagnosis of MAFLD depended on the US Fatty Liver Index (US FLI) and evidence of metabolic dysregulation. Eleven metabolites of PAEs were included in the study. Poisson regression, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were used to assess the associations between phthalate metabolites and MAFLD. After adjusting for potential confounders, Poisson regression analysis showed that mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-n-butyl phthalate, mono-(3-carboxypropyl) phthalate, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate were generally significant positively associated with MAFLD (P<0.05). Furthermore, the WQS index constructed for the eleven phthalates was significantly related to MAFLD (OR:1.43; 95%CI: 1.20, 1.70), MEHHP (33.30%), MEP (20.84%), MECPP (15.43%), and mono-isobutyl phthalate (11.78%) contributing the most. This study suggests that exposure to phthalates, individually or in combination, may be associated with an increased risk of MAFLD.


Subject(s)
Environmental Pollutants , Liver Diseases , Phthalic Acids , Adult , Humans , United States/epidemiology , Nutrition Surveys , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity
2.
Biol Trace Elem Res ; 194(2): 336-347, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31300957

ABSTRACT

The relationship between serum copper (Cu) level and overweight/obesity remains controversial. The purpose of this meta-analysis is to evaluate the relationship. A comprehensive literature search was performed in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases for relevant articles until March 20, 2019. The random-effect model (REM) was adopted to compute the combined standardized mean difference (SMD) with 95% confidence interval (CI). Publication bias was estimated using the visualization of funnel plots and Egger's test. In the end, twenty-one articles were included in the meta-analysis. Compared with controls, serum Cu level was higher in obese children (SMD (95% CI) 0.74 (0.16, 1.32)) and in obese adults (SMD (95% CI) 0.39 (0.02, 0.76)). There was no significant difference in serum Cu between overweight and control groups in children (SMD (95% CI) 1.52 (- 0.07, 3.12)) and in adults (SMD (95% CI) 0.16 (- 0.06, 0.38)). Moreover, subgroup analysis revealed a higher serum Cu level in obese children (SMD (95% CI) 0.90 (0.36, 1.45)) and obese adults (SMD (95% CI) 0.47 (0.05, 0.88)) compared with healthy weight controls. The SMD differs significantly between obese children diagnosed by weight-for-height and controls (SMD (95% CI) 1.56 (0.57, 2.55)), and there was a significant difference of serum Cu level between obese adults diagnosed by BMI (WHO) and controls (SMD (95% CI) 0.54 (0.08, 1.01)). This meta-analysis indicates that a higher serum Cu level might be associated with the risk of obesity in children and adults, and these findings need to be further confirmed.


Subject(s)
Copper , Pediatric Obesity , Adult , Body Weight , Child , China , Humans , Overweight
3.
Eur J Nutr ; 58(8): 2971-2982, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30542939

ABSTRACT

PURPOSE: The association between serum zinc level and overweight/obesity remains controversial. Hence, we performed a meta-analysis to summarize the relationships. METHODS: A systematic literature search was performed in PubMed, Web of Science and Embase for relevant English articles up to April 20, 2018. The pooled standardized mean difference (SMD) with 95% confidence interval (CI) was calculated with the random-effect model. RESULTS: For children and adults, the results showed that serum zinc level was significantly lower in the cases compared to controls ([SMD (95% CI): - 1.13 (- 2.03, - 0.23), Z = 2.45, P for Z = 0.014; I2 = 97.1%, P for I2 < 0.001] and [SMD (95% CI): - 0.41 (- 0.68, - 0.15), Z = 3.03, P for Z = 0.002; I2 = 62.9%, P for I2 = 0.009], respectively). The difference of serum zinc level between overweight adults and controls was not statistically significant [SMD (95% CI): - 0.09 (- 0.27, 0.09), Z = 0.97, P for Z = 0.334; I2 = 0.0%, P for I2 = 0.411]. In subgroup analyses, a lower serum zinc level in obese children compared with non-obese controls was observed [SMD (95% CI): - 2.14 (- 3.20, - 1.09)], and the SMD differ significantly between obese adults and controls in the case-control studies [SMD (95% CI): - 0.49 (- 0.90, - 0.08)]. CONCLUSION: Our meta-analysis suggested that the serum zinc level was significantly lower in obese children and adults. More large observational studies are required to confirm these results in future research.


Subject(s)
Overweight/blood , Zinc/blood , Adult , Child , Child, Preschool , Female , Humans , Male , Obesity/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...