Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 43(5): 116, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622229

ABSTRACT

KEY MESSAGE: The study on the GmDWF1-deficient mutant dwf1 showed that GmDWF1 plays a crucial role in determining soybean plant height and yield by influencing the biosynthesis of brassinosteroids. Soybean has not adopted the Green Revolution, such as reduced height for increased planting density, which have proven beneficial for cereal crops. Our research identified the soybean genes GmDWF1a and GmDWF1b, homologous to Arabidopsis AtDWF1, and found that they are widely expressed, especially in leaves, and linked to the cellular transport system, predominantly within the endoplasmic reticulum and intracellular vesicles. These genes are essential for the synthesis of brassinosteroids (BR). Single mutants of GmDWF1a and GmDWF1b, as well as double mutants of both genes generated through CRISPR/Cas9 genome editing, exhibit a dwarf phenotype. The single-gene mutant exhibits moderate dwarfism, while the double mutant shows more pronounced dwarfism. Despite the reduced stature, all types of mutants preserve their node count. Notably, field tests have shown that the single GmDWF1a mutant produced significantly more pods than wild-type plants. Spraying exogenous brassinolide (BL) can compensate for the loss in plant height induced by the decrease in endogenous BRs. Comparing transcriptome analyses of the GmDWF1a mutant and wild-type plants revealed a significant impact on the expression of many genes that influence soybean growth. Identifying the GmDWF1a and GmDWF1b genes could aid in the development of compact, densely planted soybean varieties, potentially boosting productivity.


Subject(s)
Arabidopsis , Brassinosteroids , Brassinosteroids/metabolism , Glycine max/genetics , CRISPR-Cas Systems/genetics , Mutation/genetics , Arabidopsis/metabolism , Gene Editing , Gene Expression Regulation, Plant/genetics
2.
Plants (Basel) ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36840137

ABSTRACT

Selenium (Se) is an essential element for mammals, and its deficiency in the diet is a global problem. Agronomic biofortification through exogenous Se provides a valuable strategy to enhance human Se intake. Selenium nanoparticles (SeNPs) have been regarded to be higher bioavailability and less toxicity in comparison with selenite and selenate. Still, little has been known about the mechanism of their metabolism in plants. Soybean (Glycine max L.) can enrich Se, providing an ideal carrier for Se biofortification. In this study, soybean sprouts were treated with SeNPs, and a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing was applied to clarify the underlying molecular mechanism of SeNPs metabolism. A total of 74,662 nonredundant transcripts were obtained, and 2109 transcription factors, 9687 alternative splice events, and 3309 long non-coding RNAs (lncRNAs) were predicted, respectively. KEGG enrichment analysis of the DEGs revealed that metabolic pathways, biosynthesis of secondary metabolites, and peroxisome were most enriched both in roots and leaves after exposure to SeNPs. A total of 117 transcripts were identified to be putatively involved in SeNPs transport and biotransformation in soybean. The top six hub genes and their closely coexpressed Se metabolism-related genes, such as adenylylsulfate reductase (APR3), methionine-tRNA ligase (SYM), and chloroplastic Nifs-like cysteine desulfurases (CNIF1), were screened by WGCNA and identified to play crucial roles in SeNPs accumulation and tolerance in soybean. Finally, a putative metabolism pathway of SeNPs in soybean was proposed. These findings have provided a theoretical foundation for future elucidation of the mechanism of SeNPs metabolism in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...