Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Plant Biol ; 66(2): 228-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38351714

ABSTRACT

Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.


Subject(s)
Fruit , Magnoliopsida , Animals , Female , Fruit/genetics , Phylogeny , Magnoliopsida/genetics , Ovary , Seeds/genetics
2.
Nature ; 621(7978): 423-430, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674078

ABSTRACT

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Subject(s)
Codon, Initiator , Nucleic Acid Conformation , RNA, Double-Stranded , RNA, Messenger , Humans , Arabidopsis/genetics , Arabidopsis/immunology , Codon, Initiator/genetics , Innate Immunity Recognition , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Ribosomes/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , Transcriptome , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Deep Learning
3.
Curr Opin Plant Biol ; 73: 102352, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934653

ABSTRACT

In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Signal Transduction , Plant Immunity/genetics , Cell Nucleus/metabolism , Plants/metabolism , Transcription Factors/metabolism , Salicylic Acid/metabolism , Gene Expression Regulation, Plant
4.
Mol Biol Evol ; 37(11): 3188-3210, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32652014

ABSTRACT

Asterids are one of the most successful angiosperm lineages, exhibiting extensive morphological diversity and including a number of important crops. Despite their biological prominence and value to humans, the deep asterid phylogeny has not been fully resolved, and the evolutionary landscape underlying their radiation remains unknown. To resolve the asterid phylogeny, we sequenced 213 transcriptomes/genomes and combined them with other data sets, representing all accepted orders and nearly all families of asterids. We show fully supported monophyly of asterids, Berberidopsidales as sister to asterids, monophyly of all orders except Icacinales, Aquifoliales, and Bruniales, and monophyly of all families except Icacinaceae and Ehretiaceae. Novel taxon placements benefited from the expanded sampling with living collections from botanical gardens, resolving hitherto uncertain relationships. The remaining ambiguous placements here are likely due to limited sampling and could be addressed in the future with relevant additional taxa. Using our well-resolved phylogeny as reference, divergence time estimates support an Aptian (Early Cretaceous) origin of asterids and the origin of all orders before the Cretaceous-Paleogene boundary. Ancestral state reconstruction at the family level suggests that the asterid ancestor was a woody terrestrial plant with simple leaves, bisexual, and actinomorphic flowers with free petals and free anthers, a superior ovary with a style, and drupaceous fruits. Whole-genome duplication (WGD) analyses provide strong evidence for 33 WGDs in asterids and one in Berberidopsidales, including four suprafamilial and seven familial/subfamilial WGDs. Our results advance the understanding of asterid phylogeny and provide numerous novel evolutionary insights into their diversification and morphological evolution.


Subject(s)
Chromosome Duplication , Magnoliopsida/genetics , Phylogeny , Polyploidy , Flowers/anatomy & histology , Magnoliopsida/anatomy & histology , Magnoliopsida/metabolism , Transcriptome
5.
Mol Biol Evol ; 34(2): 262-281, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27856652

ABSTRACT

Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.


Subject(s)
Gene Duplication , Rosaceae/genetics , Biological Evolution , Databases, Chemical , Evolution, Molecular , Fruit/genetics , Genome, Plant , Genomics , Malus/genetics , Phylogeny , Plant Proteins/genetics , Seeds/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...