Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 2): 118935, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621630

ABSTRACT

Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 µmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.


Subject(s)
Aluminum , Ferric Compounds , Lead , Models, Chemical , Lead/chemistry , Ferric Compounds/chemistry , Adsorption , Aluminum/chemistry , Aluminum/analysis
2.
Environ Pollut ; 344: 123318, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38218545

ABSTRACT

Hematite is an iron oxide commonly found in terrestrial environments and plays an essential role in controlling the migration of heavy metal(loid)s in groundwater and sediments. Although defects were shown to exist both in naturally occurring and laboratory-synthesized hematite, their influences on the immobilization of heavy metal(loid)s remain poorly understood. In this study, hematite samples with tunable vacancy defect concentrations were synthesized to evaluate their adsorption capacities for the cation Pb(II) and for the oxyanion As(V). The defects in hematite were characterized using XRD, TEM-EDS mapping, position annihilation lifetime spectroscopy, and XAS. The surface charge characteristics in defective hematite were investigated using zeta potential measurements. We found that Fe vacancies were the primary defect type in the hematite structure. Batch experiments confirmed that Fe vacancies in hematite promoted As(V) adsorption, while they decreased Pb(II) adsorption. The reason for the opposite effects of Fe vacancies on Pb(II) and As(V) immobilization was investigated using DFT calculations and EXAFS analysis. The results revealed that Fe vacancies altered As-Fe coordination from a monodentate to a bidentate complex and increased the length of the Pb-Fe bond on the hematite surface, thereby leading to an increase in As(V) bonding strength, while decreasing Pb(II) adsorption affinity. In addition, the zeta potential analysis demonstrated that the presence of Fe vacancies led to an increase in the isoelectric point (IEP) of hematite samples, which therefore decreased the attraction for the cation Pb(II) and increased the attraction for the oxyanion As(V). The combination of these two effects caused by defects contributed to the contrasting difference between cation Pb(II) and oxyanion As(V) immobilization by defective hematite. Our study therefore provides new insights into the migration and fate of toxic heavy metal(loid)s controlled by iron minerals.


Subject(s)
Ferric Compounds , Lead , Ferric Compounds/chemistry , Iron/chemistry , Minerals/chemistry , Adsorption
3.
Environ Sci Technol ; 57(33): 12453-12464, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37561149

ABSTRACT

Hematite is a common iron oxide in natural environments, which has been observed to influence the transport and fate of arsenate by its association with hematite. Although oxygen vacancies were demonstrated to exist in hematite, their contributions to the arsenate immobilization have not been quantified. In this study, hematite samples with tunable oxygen vacancy defect (OVD) concentrations were synthesized by treating defect-free hematite using different NaBH4 solutions. The vacancy defects were characterized by positron annihilation lifetime spectroscopy, Doppler broadening of annihilation radiation, extended X-ray absorption fine structure (EXAFS), thermogravimetric mass spectrometry (TG-MS), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The results revealed that oxygen vacancy was the primary defect type existing on the hematite surface. TG-MS combined with EPR analysis allowed quantification of OVD concentrations in hematite. Batch experiments revealed that OVDs had a positive effect on arsenate adsorption, which could be quantitatively described by a linear relationship between the OVD concentration (Cdef, mmol m-2) and the enhanced arsenate adsorption amount caused by defects (ΔQm, µmol m-2) (ΔQm = 20.94 Cdef, R2 = 0.9813). NH3-diffuse reflectance infrared Fourier transform (NH3-DRIFT) analysis and density functional theory (DFT) calculations demonstrated that OVDs in hematite were beneficial to the improvement in adsorption strength of surface-active sites, thus considerably promoting the immobilization of arsenate.


Subject(s)
Arsenates , Ferric Compounds , Ferric Compounds/chemistry , Adsorption
4.
Environ Pollut ; 314: 120268, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36167163

ABSTRACT

Goethite is a commonly found iron (hydr)oxide in soils and sediments that has been proven to possess abundant defects in structures. However, the underlying impact of these defects in goethite on arsenic immobilization remains unclear. In this study, goethite samples with abundant, moderate, and sparse defects were synthesized to evaluate their arsenic adsorption capacities. The characteristics of the defects in goethite were investigated by extended X-ray absorption fine structure (EXAFS), high angle annular dark field-scanning transmission electron microscopy-energy dispersion spectrum (HAADF-STEM-EDS) mapping, vibrating-sample magnetometry (VSM), and electron spin resonance (ESR). The characterization analysis revealed that the defects in as-synthesized goethite primarily existed in the form of Fe vacancies. Batch experiments demonstrated that the adsorption capacities of defect-rich goethite for As(V) and As(III) removal were 10.2 and 22.1 times larger than those of defect-poor goethite, respectively. The origin of the impact of Fe defects on arsenic immobilization was theoretically elucidated using density functional theory (DFT) calculations. The enhanced adsorption of goethite was attributed to the improvement of the arsenic affinity due to the Fe vacancy defect, thus considerably promoting arsenic immobilization. The findings of this study provide important insight into the migration and fate of arsenic in naturally occurring iron (hydr)oxides.


Subject(s)
Arsenic , Iron Compounds , Arsenic/analysis , Adsorption , Iron Compounds/chemistry , Minerals/chemistry , Iron/chemistry , Oxides/analysis , Soil , Ferric Compounds/chemistry
5.
Chemosphere ; 280: 130597, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33932906

ABSTRACT

The fate of As(V) in subsurface environments is strongly affected by ubiquitous iron oxides. Defects are commonly present in natural hematite, while the impacts of defects on the active sites and complexation mechanism of hematite for As(V) remain poorly understood. In this study, the defect-rich hematite was employed to investigate the surface charge characteristics and As(V) adsorption behavior using potentiometric acid-base titration and CD-MUSIC model in comparison with corresponding defect-poor hematite. The total arsenate-active site density (5.7 sites/nm2) on defective hematite includes 1.2 sites/nm2 of original sites and 4.5 sites/nm2 of Fe vacancy-induced sites. The result revealed that the vacant Fe3+ sites in defective hematite was compensated by the protons in solution, thus resulting in a considerable increase in site density as well as positive charge. The CD-MUSIC modeling results demonstrated that the presence of Fe vacancies in hematite is beneficial to the improvement in affinity constants for both monodentate and bidentate arsenate complexes. The high adsorption capacity of defective hematite (2.60 µmol/m2) compared to defect-free hematite (1.33 µmol/m2) is attributed to its large affinity constants as well as its more active surface sites, thereby playing a vital role in reducing the threats of heavy metals in the environment.


Subject(s)
Ferric Compounds , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...