Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
mSystems ; 9(4): e0116523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530056

ABSTRACT

To establish infections in human hosts, Pseudomonas aeruginosa must overcome innate immune-generated oxidative stress, such as the hypochlorous acid (HOCl) produced by neutrophils. We set out to find specific biomarkers of oxidative stress through the development of a protocol for the metabolic profiling of P. aeruginosa cultures grown in the presence of different oxidants using a novel ionization technique for mass spectrometry, laser desorption rapid evaporative ionization mass spectrometry (LD-REIMS). We demonstrated the ability of LD-REIMS to classify samples as untreated or treated with a specific oxidant with 100% accuracy and identified a panel of 54 metabolites with significantly altered concentrations after exposure to one or more of the oxidants. Key metabolic changes were conserved in P. aeruginosa clinical strains isolated from patients with cystic fibrosis lung infections. These data demonstrated that HOCl stress impacted the Pseudomonas quinolone signal (PQS) quorum sensing system. Ten 2-alkyl-4-quinolones (AHQs) associated with the PQS system were significantly lower in concentration in HOCl-stressed P. aeruginosa cultures, including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), the most active signal molecule of the PQS system. The PQS system regulates the production of virulence factors, including pyocyanin and elastase, and their levels were markedly affected by HOCl stress. No pyocyanin was detectable and elastase concentrations were reduced by more than 75% in cultures grown with sub-lethal concentrations of HOCl, suggesting that this neutrophil-derived oxidant may disrupt the ability of P. aeruginosa to establish infections through interference with production of PQS-associated virulence factors. IMPORTANCE: This work demonstrates that a high-throughput ambient ionization mass spectrometry method can be used successfully to study a bacterial stress response. Its application to the opportunistic pathogen Pseudomonas aeruginosa led to the identification of specific oxidative stress biomarkers, and demonstrated that hypochlorous acid, an oxidant specifically produced by human neutrophils during infection, affects quorum sensing and reduces production of the virulence factors pyocyanin and elastase. No pyocyanin was detectable and elastase levels were reduced by more than 75% in bacteria grown in the presence of hypochlorous acid. This approach has the potential to be widely applicable to the characterization of the stress responses of bacteria.


Subject(s)
Quinolones , Quorum Sensing , Humans , Pseudomonas aeruginosa , Hypochlorous Acid/metabolism , Pyocyanine/metabolism , Quinolones/analysis , Virulence Factors/metabolism , Mass Spectrometry , Oxidants/metabolism , Pancreatic Elastase/metabolism , Biomarkers/metabolism , Lasers
2.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Article in English | MEDLINE | ID: mdl-37580540

ABSTRACT

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Subject(s)
Colorectal Neoplasms , Animals , Humans , Mice , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Metabolomics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
3.
Phytother Res ; 37(12): 5803-5820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632389

ABSTRACT

T-lymphokine-activated killer cell-originated protein kinase (TOPK) is a serine-threonine kinase that is overexpressed in gastric cancer (GC) and promotes tumor progression. Polyphyllin VII (PPVII), a pennogenin isolated from the rhizomes of Paris polyphylla, shows anticancer effects. Here, we explored the antitumor activity and mechanism of PPVII in GC. Ferroptosis was detected by transmission electron microscope, malondialdehyde, and iron determination assays. Autophagy and its upstream signaling pathway were detected by Western blot, and gene alterations. The binding of PPVII and TOPK was examined through microscale thermophoresis and drug affinity responsive target stability assays. An in vivo mouse model was performed to evaluate the therapeutic of PPVII. PPVII inhibits GC by inducing autophagy-mediated ferroptosis. PPVII promotes the degradation of ferritin heavy chain 1, which is responsible for autophagy-mediated ferroptosis. PPVII activates the Unc-51-like autophagy-activating kinase 1 (ULK1) upstream of autophagy. PPVII inhibits the activity of TOPK, thereby weakening the inhibition of downstream ULK1. PPVII stabilizes the dimer of the inactive form of TOPK by direct binding. PPVII inhibits tumor growth without causing obvious toxicity in vivo. Collectively, this study suggests that PPVII is a potential agent for the treatment of GC by targeting TOPK to activate autophagy-mediated ferroptosis.


Subject(s)
Ferroptosis , Stomach Neoplasms , Humans , Animals , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Stomach Neoplasms/drug therapy , Killer Cells, Lymphokine-Activated/metabolism , Autophagy , Cell Line, Tumor
4.
Phytomedicine ; 117: 154921, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327642

ABSTRACT

BACKGROUND: E26 transformation specificity-1 (ETS1) is a transcription factor that is overexpressed in breast cancer (BC) and promotes tumor progression. Sculponeatin A (stA), a new diterpenoid extracted from Isodon sculponeatus, has no reported antitumor mechanism. PURPOSE: Here, we explored the antitumor activity of stA in BC and further clarified its mechanism. METHODS: Ferroptosis was detected by flow cytometric, glutathione, malondialdehyde, and iron determination assays. The effect of stA on the upstream signaling pathway of ferroptosis was detected by Western blot, gene expression, gene alterations and other approaches. The binding of stA and ETS1 was examined through a microscale thermophoresis assay and a drug affinity responsive target stability assay. An in vivo mouse model experiment was performed to evaluate the therapeutic and potential mechanism of stA. RESULTS: stA exhibits therapeutic potential in BC by inducing SLC7A11/xCT-dependent ferroptosis. stA decreases the expression of ETS1, which is responsible for xCT-dependent ferroptosis in BC. stA inhibits the transcriptional expression of xCT by directly binding to the ETS domain of the ETS1 protein. In addition, stA promotes proteasomal degradation of ETS1 by triggering ubiquitin ligase synoviolin 1 (SYVN1)-mediated ubiquitination. The K318 site of ETS1 mediates ubiquitination of ETS1 by SYVN1. In a mouse model, stA inhibits tumor growth without causing obvious toxicity. CONCLUSION: Taken together, the results confirm that stA promotes the ETS1-SYVN1 interaction to induce ferroptosis in BC mediated by ETS1 degradation. stA is expected to be used in research of candidate drugs for BC and drug design based on ETS1 degradation.


Subject(s)
Ferroptosis , Neoplasms , Mice , Animals , Ubiquitination , Disease Models, Animal , Signal Transduction
5.
Metabolites ; 13(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37233710

ABSTRACT

Mass spectrometry imaging (MSI) has been a key driver of groundbreaking discoveries in a number of fields since its inception more than 50 years ago. Recently, MSI development trends have shifted towards ambient MSI (AMSI) as the removal of sample-preparation steps and the possibility of analysing biological specimens in their natural state have drawn the attention of multiple groups across the world. Nevertheless, the lack of spatial resolution has been cited as one of the main limitations of AMSI. While significant research effort has presented hardware solutions for improving the resolution, software solutions are often overlooked, although they can usually be applied in a cost-effective manner after image acquisition. In this vein, we present two computational methods that we have developed to directly enhance the image resolution post-acquisition. Robust and quantitative resolution improvement is demonstrated for 12 cases of openly accessible datasets across laboratories around the globe. Using the same universally applicable Fourier imaging model, we discuss the possibility of true super-resolution by software for future studies.

6.
ACS Appl Mater Interfaces ; 15(10): 13033-13041, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36861810

ABSTRACT

Rationally designing stable and low-cost electrocatalysts with high efficiency is of great significance for the large-scale electrochemical reduction of carbon monoxide (eCOR) to high-value-added multicarbon products. Inspired by the tunable atomic structures, abundant active sites, and excellent properties of two-dimensional (2D) materials, in this work, we designed several novel 2D C-rich copper carbide materials as eCOR electrocatalysts by performing an extensive structural search and comprehensive first-principles computations. According to the computed phonon spectra, formation energies, and ab initio molecular dynamics simulations, we screened out two highly stable candidates, i.e., CuC2 and CuC5 monolayers with metallic features. Interestingly, the predicted 2D CuC5 monolayer exhibits superior eCOR performance for C2H5OH synthesis with high catalytic activity (low limiting potential of -0.29 V and small activation energy for C-C coupling of 0.35 eV) and high selectivity (significant suppressing effect on the side reactions). Thus, we predicted that the CuC5 monolayer holds great potential as an eligible electrocatalyst for CO conversion to multicarbon products, which could motivate more study to develop highly efficient electrocatalysts in similar binary noble-metal compounds.

7.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5890-5899, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472008

ABSTRACT

This study aims to investigate the effect of ethoxysanguinarine(Eth) on cisplatin(DDP)-resistant human gastric cancer cells and decipher the underlying mechanism. The human gastric cancer cell line SGC7901 and the DDP-resistant cell line SGC7901/DDP were used as the cell models. Western blot was employed to determine the expression levels of multidrug resistance-related proteins, and methyl thiazolyl tetrazolium(MTT) assay to detect the proliferation of SGC7901 and SGC7901/DDP cells exposed to DDP. After treatment with different concentrations of Eth, the proliferation of SGC7901 and SGC7901/DDP cells was detected by MTT assay, trypan blue exclusion assay, colony formation assay, and high-content imaging and analysis system. The apoptosis of SGC7901/DDP cells was detected by flow cytometry with Annexin V-FITC/PI staining. GFP-LC3 transfection was carried out to detect the effect of Eth on the autophagy of SGC7901/DDP cells. The expression levels of the multidrug resistance-related protein P-glycoprotein(P-gp), the apoptosis-related proteins [caspase-9, caspase-3, and poly(ADP-ribose) polymerase(PARP)], the autophagy-related protein light chain 3-Ⅱ(LC3-Ⅱ), the key effectors [mammalian target of rapamycin(mTOR), 70 kDa ribosomal protein S6 kinase(P70 S6 K), and 4 E binding protein 1(4 E-BP1)] of the mammalian target of rapamycin complex 1(mTORC1) signaling pathway, cancerous inhibitor of protein phosphatase 2A(CIP2A), and protein kinase B(Akt) were measured by Western blot. The mRNA level of CIP2A in the SGC7901/DDP cells exposed to Eth for 24 h was analyzed by RT-qPCR. After SGC7901/DDP cells were transfected with CIP2A expression vector pcDNA3.1-HA-CIP2A and treated with different concentrations of Eth, MTT assay was used to determine the prolife-ration of SGC7901/DDP cells and Western blot to detect the expression levels of related proteins. The interaction sites of Eth and CIP2A were predicted by molecular docking. The affinity between Eth and CIP2A was determined by drug affinity responsive target stability(DARTS) assay. The pharmacokinetic properties and drug-like activity of Eth were predicted by SwissADME. The results indicated that SGC7901/DDP cells were more sensitive to Eth than SGC7901 cells. Eth significantly inhibited proliferation and colony formation and changed the morphology, roundness, and area of SGC7901/DDP cells. Eth treatment caused the nucleus shrinking and significantly increased the apoptosis rate of the cells. Furthermore, Eth down-regulated the expression of caspase-9 and caspase-3 precursors and promoted the cleavage of PARP, which suggested that Eth induced the apoptosis of SGC7901/DDP cells. The GFP-LC3 in Eth-treated cells showed speckled aggregation. The up-regulated expression of LC3-Ⅱ by Eth indicated that Eth activated the autophagy of SGC7901/DDP cells. Eth down-regulated the expression of P-gp, the phosphorylation of mTOR, P70 S6K, and 4E-BP1, the expression of CIP2A, and the phosphorylation of Akt. Additionally, it increased the activity of PP2A, and had no significant effect on the expression of CIP2A in SGC7901/DDP cells. CIP2A overexpression antagonized the inhibition of cell proliferation and the activation of autophagy by Eth. Molecular docking suggested that Eth bound to CIP2A. The results of DARTS assay further proved the above binding effect. Eth has potential drug-like activity. The above results demonstrated that Eth inhibited the proliferation, induced the apoptosis, and activated the autophagy of SGC7901/DDP cells by targeting CIP2A and then down-regulating PP2A/mTORC1 signaling pathway. This study provided a new target for the treatment of cisplatin-resistant gastric cancer.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Caspase 9/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caspase 3/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Autophagy , Apoptosis , Cell Proliferation , Apoptosis Regulatory Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Line, Tumor
8.
Metabolites ; 12(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35629959

ABSTRACT

Optical microscopy has long been the gold standard to analyse tissue samples for the diagnostics of various diseases, such as cancer. The current diagnostic workflow is time-consuming and labour-intensive, and manual annotation by a qualified pathologist is needed. With the ever-increasing number of tissue blocks and the complexity of molecular diagnostics, new approaches have been developed as complimentary or alternative solutions for the current workflow, such as digital pathology and mass spectrometry imaging (MSI). This study compares the performance of a digital pathology workflow using deep learning for tissue recognition and an MSI approach utilising shallow learning to annotate formalin-fixed and paraffin-embedded (FFPE) breast cancer tissue microarrays (TMAs). Results show that both deep learning algorithms based on conventional optical images and MSI-based shallow learning can provide automated diagnostics with F1-scores higher than 90%, with the latter intrinsically built on biochemical information that can be used for further analysis.

9.
Acta Pharmacol Sin ; 43(6): 1568-1580, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34522004

ABSTRACT

Dysregulation of the Hippo signaling pathway seen in many types of cancer is usually associated with a poor prognosis. Paris saponin VII (PSVII) is a steroid saponin isolated from traditional Chinese herbs with therapeutic action against various human cancers. In this study we investigated the effects of PSVII on human breast cancer (BC) cells and its anticancer mechanisms. We showed that PSVII concentration-dependently inhibited the proliferation of MDA-MB-231, MDA-MB-436 and MCF-7 BC cell lines with IC50 values of 3.16, 3.45, and 2.86 µM, respectively, and suppressed their colony formation. PSVII (1.2-1.8 µM) induced caspase-dependent apoptosis in the BC cell lines. PSVII treatment also induced autophagy and promoted autophagic flux in the BC cell lines. PSVII treatment decreased the expression and nuclear translocation of Yes-associated protein (YAP), a downstream transcriptional effector in the Hippo signaling pathway; overexpression of YAP markedly attenuated PSVII-induced autophagy. PSVII-induced, YAP-mediated autophagy was associated with increased active form of LATS1, an upstream effector of YAP. The activation of LATS1 was involved the participation of multiple proteins (including MST2, MOB1, and LATS1 itself) in an MST2-dependent sequential activation cascade. We further revealed that PSVII promoted the binding of LATS1 with MST2 and MOB1, and activated LATS1 in the BC cell lines. Molecular docking showed that PSVII directly bound to the MST2-MOB1-LATS1 ternary complex. Microscale thermophoresis analysis and drug affinity responsive targeting stability assay confirmed the high affinity between PSVII and the MST2-MOB1-LATS1 ternary complex. In mice bearing MDA-MB-231 cell xenograft, administration of PSVII (1.5 mg/kg, ip, 4 times/week, for 4 weeks) significantly suppressed the tumor growth with increased pLATS1, LC3-II and Beclin 1 levels and decreased YAP, p62 and Ki67 levels in the tumor tissue. Overall, this study demonstrates that PSVII is a novel and direct Hippo activator that has great potential in the treatment of BC.


Subject(s)
Breast Neoplasms , Saponins , Animals , Autophagy , Breast Neoplasms/drug therapy , Cell Proliferation , Female , Hippo Signaling Pathway , Humans , Mice , Molecular Docking Simulation , Protein Serine-Threonine Kinases , Saponins/pharmacology , Saponins/therapeutic use
10.
J Mass Spectrom Adv Clin Lab ; 22: 50-55, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34939055

ABSTRACT

Background: Metabolites, especially lipids, have been shown to be promising therapeutic targets. In conjugation with genes and proteins they can be used to identify phenotypes of disease and support the development of targeted treatments. The majority of clinically collected tissue samples are stored in formalin-fixed and paraffin embedded (FFPE) blocks due to their tissue conservation ability and indefinite storage capacity. For metabolic analysis, however, fresh frozen (FF) samples are currently preferred over FFPE samples due to concerns of metabolic information being lost when preparing the samples. With little or no sample preparation, desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) allows for the study of spatial as well as spectral information. Methods: DESI-MSI analysis was performed on FFPE breast cancer tissue microarray samples from 213 patients collected between the years 1935-2013. Logistic regression (LR) models were built to classify samples based on age and FF samples were used for feature validation. Results: LR models developed on the FFPE samples achieved an average classification accuracy of 96% when predicting their age with a 10-year grouping. Closer examination of the metabolic change over time revealed that the mean signal intensities for the lower mass range (100 - 500 m/z) linearly decrease over time, while the mean intensities for the higher mass range (500 - 900 m/z), remained relatively constant. Conclusions: In our samples, which span over 70 years, sample age has a weak yet quantifiable impact on metabolite content in FFPE samples, while the higher mass range is seemingly unaffected. FFPE samples thus provide an alternative avenue for metabolic analysis of lipids.

11.
Cancer Sci ; 112(12): 4867-4882, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34609770

ABSTRACT

G protein pathway suppressor 2 (GPS2) is expressed in most human tissues, including the stomach. However, the biological functions of GPS2 in cancer, as well as the underlying molecular mechanisms, remain poorly understood. Here, we report that GPS2 expression was aberrantly downregulated in gastric cancer (GC) tissues compared with control tissues. Clinicopathologic analysis showed that low GPS2 expression was significantly correlated with pathological grade, lymph node stage, and invasive depth. Kaplan-Meier analysis indicated that patients with low GPS2 expression showed poorer overall survival rates than those with high GPS2 expression. Moreover, GPS2 overexpression decreased GC cell proliferation, colony formation, tumorigenesis, and invasion. Overexpression of GPS2 reduced the protein expression of epidermal growth factor receptor (EGFR) and inhibited its downstream signaling in GC cells. Interestingly, GPS2 decreased EGFR protein expression, which was reversed by a lysosome inhibitor. Furthermore, GPS2 reduced EGFR protein stability by enhancing the binding of EGFR and an E3 ligase, c-Cbl, which promoted the ubiquitination of EGFR, ultimately leading to its degradation through the lysosomal pathway. Further analysis indicated that GPS2 activated autophagy and promoted the autophagic flux by destabilizing EGFR. Taken together, these results suggest that low GPS2 expression is associated with GC progression and provide insights into the applicability of the GPS2-EGFR axis as a potential therapeutic target in GC.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Stomach Neoplasms/pathology , Case-Control Studies , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Down-Regulation , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Female , Humans , Lymphatic Metastasis , Male , Neoplasm Grading , Neoplasm Transplantation , Prognosis , Protein Stability , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Survival Analysis , Ubiquitination
12.
J Biophotonics ; 14(7): e202000508, 2021 07.
Article in English | MEDLINE | ID: mdl-33675294

ABSTRACT

Brillouin imaging relies on the reliable extraction of subtle spectral information from hyperspectral datasets. To date, the mainstream practice has been to use line fitting of spectral features to retrieve the average peak shift and linewidth parameters. Good results, however, depend heavily on sufficient signal-to-noise ratio and may not be applicable in complex samples that consist of spectral mixtures. In this work, we thus propose the use of various multivariate algorithms that can be used to perform supervised or unsupervised analysis of the hyperspectral data, with which we explore advanced image analysis applications, namely unmixing, classification and segmentation in a phantom and live cells. The resulting images are shown to provide more contrast and detail, and obtained on a timescale ∼102 faster than fitting. The estimated spectral parameters are consistent with those calculated from pure fitting.


Subject(s)
Algorithms , Unsupervised Machine Learning , Diagnostic Imaging , Image Processing, Computer-Assisted , Multivariate Analysis
13.
Chin J Nat Med ; 19(3): 195-204, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33781453

ABSTRACT

Paris saponin VII (PSVII), a bioactive constituent extracted from Trillium tschonoskii Maxim., is cytotoxic to several cancer types. This study was designed to explore whether PSVII prevents non-small-cell lung cancer (NSCLC) proliferation and to investigate its molecular target. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PSVII induces autophagy by activating AMPK and inhibiting mTOR signaling. Furthermore, PSVII-induced autophagy activation was reversed by the AMPK inhibitor compound C. Computational docking analysis showed that PSVII directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis assay and drug affinity responsive target stability assay further confirmed the high affinity between PSVII and AMPK. In summary, PSVII acts as a direct AMPK activator to induce cell autophagy, which inhibits the growth of NSCLC cells. In the future, PSVII therapy should be applied to treat patients with NSCLC.


Subject(s)
Apoptosis , Autophagy , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Saponins/pharmacology , AMP-Activated Protein Kinases/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy
14.
Biomed Opt Express ; 11(11): 6687-6698, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33282517

ABSTRACT

Brillouin imaging (BI) has become a valuable tool for micromechanical material characterisation, thanks to extensive progress in instrumentation in the last few decades. This powerful technique is contactless and label-free, thus making it especially suitable for biomedical applications. Nonetheless, to fully harness the non-contact and non-destructive nature of BI, transformational changes in instrumentation are still needed to extend the technology's utility into the domain of in vivo and in situ operation, which we foresee to be particularly crucial for wide spread usage of BI, e.g. in medical diagnostics and pathology screening. This work addresses this challenge by presenting the first demonstration of a fibre-optic Brillouin probe, capable of mapping the micromechanical properties of a tissue-mimicking phantom. This is achieved through combination of miniaturised optical design, advanced hollow-core fibre fabrication and high-resolution 3D printing. Our prototype probe is compact, background-free and possesses the highest collection efficiency to date, thus providing the foundation of a fibre-based Brillouin device for remote, in situ measurements in challenging and otherwise difficult-to-reach environments in biomedical, material science and industrial applications.

15.
Biomed Opt Express ; 11(2): 1020-1031, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32133235

ABSTRACT

Brillouin spectroscopy can suffer from low signal-to-noise ratios (SNRs). Such low SNRs can render common data analysis protocols unreliable, especially for SNRs below ∼10. In this work we exploit two denoising algorithms, namely maximum entropy reconstruction (MER) and wavelet analysis (WA), to improve the accuracy and precision in determination of Brillouin shifts and linewidth. Algorithm performance is quantified using Monte-Carlo simulations and benchmarked against the Cramér-Rao lower bound. Superior estimation results are demonstrated even at low SNRs (≥ 1). Denoising is furthermore applied to experimental Brillouin spectra of distilled water at room temperature, allowing the speed of sound in water to be extracted. Experimental and theoretical values were found to be consistent to within ±1% at unity SNR.

16.
Arch Biochem Biophys ; 687: 108285, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32074500

ABSTRACT

Polyphyllin I (PPI), a bioactive constituent extracted from the rhizomes of Paris polyphylla, is cytotoxic to several cancer types. This study was designed to explore whether PPI prevents non-small-cell lung cancer (NSCLC) growth and to investigate the molecular mechanism. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. In cultured human NSCLC cell lines, PPI induces autophagy by activating AMPK and then inhibiting mTOR signaling in a concentration-dependent manner. Furthermore, the activation of autophagy induced by PPI was reversed by the AMPK inhibitor compound C. Computational docking showed that PPI directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. Microscale thermophoresis and Drug Affinity Responsive Targeting Stability (DARTS) assay further confirmed the high affinity between PPI and AMPK. In vivo studies indicated that PPI suppressed the growth of NSCLC and increased the levels of LC3-II and phosphorylated AMPK in tumors isolated from a xenograft model of NSCLC in mice. Moreover, PPI exhibited favorable pharmacokinetics in rats. In summary, PPI conclusively acts as a direct AMPK activator to induce cell autophagy which inhibits the growth of NSCLC cells. In the future, PPI therapy should be applied to treat patients with NSCLC.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Diosgenin/analogs & derivatives , Enzyme Activators/therapeutic use , Lung Neoplasms/drug therapy , AMP-Activated Protein Kinases/chemistry , Allosteric Site , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Diosgenin/metabolism , Diosgenin/pharmacokinetics , Diosgenin/therapeutic use , Enzyme Activators/metabolism , Enzyme Activators/pharmacokinetics , Female , Humans , Male , Mice, Nude , Molecular Docking Simulation , Protein Binding , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
17.
J Orthop Translat ; 17: 3-14, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31194027

ABSTRACT

Bearing compression from adjacent joints, the articular cartilage is cumulatively pressured in daily life, thus making it prone to injuries; however, once damaged, the self-healing capacity of articular cartilage is limited owing to its low metabolic property. Autologous chondrocyte implantation, a three-step repairing technique for articular lesions, has received satisfactory short-term clinical outcomes, whereas its long-term effect remains controversial. Currently, improved stem-cell therapies and novel biomaterials have shed new lights on autologous chondrocyte implantation. We would, therefore, synthesize these optimization strategies in order of their presences in the three-step protocol, seeking to find and amplify synergic effects between these strategies. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Autologous chondrocytes implantation serves as an alternative for the treatment of articular cartilage lesions to avoid potentially detrimental effects of applying microfracture. The optimized ACI should improve the cost-effectiveness of repairing articular cartilage while circumventing latent complications like osteophyte. This article synthesized optimization strategies for ACI and provided appropriate applying approaches to maximize their synergic effects. It will be a pioneering trial for combinedly using stem cells and nanotechnology to regenerate cartilage.

18.
J Pharmacol Sci ; 139(4): 304-310, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30852180

ABSTRACT

Acute myeloid leukemia (AML) is the most common subtype of hematological malignancy in humans, and its incidence increases with age. The treatment of AML still faces challenges. Therefore, there is an urgent need to develop more effective targeted therapies. The receptor tyrosine kinase C-KIT confers critical proliferative signals to AML. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an endogenous inhibitor of protein phosphatase 2A (PP2A), which promotes the growth and transformation of various solid tumors. These actions make CIP2A a promising target for tumor treatment. Here, we reported the effects and underlying mechanisms of a natural compound, cucurbitacin B (CuB), on AML. We reported that CuB suppressed growth and induced apoptosis in AML cells. The inhibition of growth and activation of apoptosis were mediated through CuB-induced downregulation of the CIP2A/PP2A/C-KIT signal pathway. Furthermore, CuB inactivated the JAK2 and STAT3 molecules downstream of C-KIT via the downregulation of CIP2A. These results advance our understanding of CuB-induced growth inhibition and apoptosis and support further investigation of CuB as a CIP2A inhibitor for AML therapies.


Subject(s)
Autoantigens/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Membrane Proteins/metabolism , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology , Animals , Autoantigens/genetics , Disease Models, Animal , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/pathology , Male , Membrane Proteins/genetics , Mice, Nude , Molecular Targeted Therapy , Protein Phosphatase 2/genetics , Proto-Oncogene Proteins c-kit/genetics , Triterpenes/therapeutic use , Tumor Cells, Cultured
19.
Molecules ; 24(3)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30759826

ABSTRACT

Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation are initially sensitive to EGFR-tyrosine kinase inhibitors (TKIs) treatment, but soon develop an acquired resistance. The treatment effect of EGFR-TKIs-resistant NSCLC patients still faces challenges. Cucurbitacin B (CuB), a triterpene hydrocarbon compound isolated from plants of various families and genera, elicits anticancer effects in a variety of cancer types. However, whether CuB is a viable treatment option for gefitinib-resistant (GR) NSCLC remains unclear. Here, we investigated the anticancer effects and underlying mechanisms of CuB. We report that CuB inhibited the growth and invasion of GR NSCLC cells and induced apoptosis. The inhibitory effect of CuB occurred through its promotion of the lysosomal degradation of EGFR and the downregulation of the cancerous inhibitor of protein phosphatase 2A/protein phosphatase 2A/Akt (CIP2A/PP2A/Akt) signaling axis. CuB and cisplatin synergistically inhibited tumor growth. A xenograft tumor model indicated that CuB inhibited tumor growth in vivo. Immunohistochemistry results further demonstrated that CuB decreased EGFR and CIP2A levels in vivo. These findings suggested that CuB could suppress the growth and invasion of GR NSCLC cells by inducing the lysosomal degradation of EGFR and by downregulating the CIP2A/PP2A/Akt signaling axis. Thus, CuB may be a new drug candidate for the treatment of GR NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/drug effects , Gefitinib/pharmacology , Lung Neoplasms/drug therapy , Lysosomes/drug effects , Signal Transduction/drug effects , Triterpenes/pharmacology , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autoantigens/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Down-Regulation/drug effects , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lysosomes/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism
20.
Front Pharmacol ; 10: 1503, 2019.
Article in English | MEDLINE | ID: mdl-31969821

ABSTRACT

Ethoxysanguinarine (Eth) is a benzophenanthridine alkaloid extracted from Macleaya cordata (Willd) R. Br. It possesses antibacterial and antiviral activities and offers therapeutic benefits for the treatment of respiratory syndrome virus-induced cytopathic effects. However, the effect of Eth on human tumors and its pharmacological effects remain to be elucidated, together with its cellular target. Here, we examined the effects of Eth on breast cancer (BC) cells. We found that at low doses, Eth strongly inhibited the viability of BC cell lines and induced autophagy. Mechanistic studies showed that Eth induced autophagy by upregulating the activity of the AMP-activated protein kinase (AMPK). The AMPK inhibitor compound C significantly attenuated Eth-induced autophagy and inhibited proliferation. Meanwhile, the AMPK activator metformin significantly enhanced Eth-induced autophagy and inhibited proliferation. Computational docking and affinity assays showed that Eth directly interacted with the allosteric drug and metabolite site of AMPK to stabilize its activation. AMPK was less activated in tumor samples compared to normal breast tissues and was inversely associated with the prognosis of the patients. Moreover, Eth exhibited potent anti-BC activity in nude mice and favorable pharmacokinetics in rats. These characteristics render Eth as a promising candidate drug for further development and for designing new effective AMPK activators.

SELECTION OF CITATIONS
SEARCH DETAIL
...