Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315041

ABSTRACT

Unraveling the configuration-activity relationship and synergistic enhancement mechanism (such as real active center, electron spin-state, and d-orbital energy level) for triatomic catalysts, as well as their intrinsically bifunctional oxygen electrocatalysis, is a great challenge. Here we present a triatomic catalyst (TAC) with a trinuclear active structure that displays extraordinary oxygen electrocatalysis for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), greatly outperforming the counterpart of single-atom and diatomic catalysts. The aqueous Zn-air battery (ZAB) equipped with a TAC-based cathode exhibits extraordinary rechargeable stability and ultrarobust cycling performance (1970 h/3940 cycles at 2 mA cm-2, 125 h/250 cycles at 10 mA cm-2 with negligible voltage decay), and the quasi-solid-state ZAB displays outstanding rechargeability and low-temperature adaptability (300 h/1800 cycles at 2 mA cm-2 at -60 °C), outperforming other state-of-the-art ZABs. The experimental and theoretical analyses reveal the symmetry-breaking CoN4 configuration under incorporation of neighboring metal atoms (Fe and Cu), which leads to d-orbital modulation, a low-shift d band center, weakened binding strength to the oxygen intermediates, and decreased energy barrier for bifunctional oxygen electrocatalysis. This rational tricoordination design as well as an in-depth mechanism analysis indicate that hetero-TACs can be promisingly applied in various electrocatalysis applications.

2.
Nanomicro Lett ; 16(1): 50, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091129

ABSTRACT

Electrocatalytic reduction of CO2 converts intermittent renewable electricity into value-added liquid products with an enticing prospect, but its practical application is hampered due to the lack of high-performance electrocatalysts. Herein, we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO2 grains, designated as Ag/Sn-SnO2 nanosheets (NSs), which possess optimized electronic structure, high electrical conductivity, and more accessible sites. As a result, such a catalyst exhibits unprecedented catalytic performance toward CO2-to-formate conversion with near-unity faradaic efficiency (≥ 90%), ultrahigh partial current density (2,000 mA cm-2), and superior long-term stability (200 mA cm-2, 200 h), surpassing the reported catalysts of CO2 electroreduction to formate. Additionally, in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO2 NSs not only promote the formation of *OCHO and alleviate the energy barriers of *OCHO to *HCOOH, but also impede the desorption of H*. Notably, the Ag/Sn-SnO2 NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce ~ 0.12 M pure HCOOH solution at 100 mA cm-2 over 200 h. This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...