Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Radiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856879

ABSTRACT

PURPOSE: Myocardial viability evaluation in predicting survival after coronary artery bypass graft (CABG) remains debatable. Thus, this study aimed to investigate the role of 13N-NH3/18F-FDG PET myocardial viability scan in predicting treatment outcomes and survival. METHODS: 90 patients with CABG and pre-surgical PET-based myocardial viability scan were retrospectively reviewed. Perfusion-metabolism features, myocardium motion parameters, and patient characteristics were recorded. Additionally, the SUVmean of blood pool, lung, liver, spleen, and muscle were measured and the SUVmean ratios were calculated. Factors associated with treatment outcomes and survival were analyzed by Logistic and Cox regressions. Nomogram models were subsequently established to predict ejection fraction (EF) improvement and survival outcomes. RESULTS: The mean EF of these 90 patients was 38.1 ± 9.5% and 46.0 ± 9.2% before and after CABG surgery, and 35 patients (38.9%) achieved EF improvement ≥ 10%. EF measurements by PET and echocardiogram showed a reasonable linear correlation (R = 0.752). Sex, pre-surgical EF, mismatch of the left ventricle, total perfusion deficit (TPD), and peak ejection rate (PER) were independent predictive factors of EF improvements. Surgery waiting time, valve damage, and SUVmean ratio of Liver/Muscle were independently predictive of event-free survival (EFS), while valve damage, together with SUVmean ratio of either Liver/Muscle or Lung/Muscle, were independently predictive of overall survival (OS). CONCLUSION: Although traditional cardiac parameters from PET-based myocardial viability can effectively predict EF improvements after CABG, SUVmean ratios of liver/muscle and lung/muscle from 13N-NH3 PET perfusion outperformed these parameters in predicting survival.

2.
Med Phys ; 51(1): 156-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043120

ABSTRACT

BACKGROUND: The prostate-specific membrane antigen (PSMA) targeted positron-emitting tomography (PET) tracers are increasingly used in clinical practice, with novel tracers constantly being developed. Recently, 18 F-PSMA-11 has been gaining growing interest for several merits; however, direct in vivo visualization of its kinetic features in humans remains lacking. PURPOSE: To visualize the kinetic features of 18 F-PSMA-11 in healthy subjects and patients with prostate cancer derived from the total-body dynamic PET scans. METHODS: A total of 8 healthy volunteers (7 males; 1 female) and 3 patients with prostate cancer underwent total-body PET/CT imaging at 1 and 2 h post injection (p.i.) of 18 F-PSMA-11, of which 7 healthy subjects and 3 patients underwent total-body dynamic PET scans lasting 30 min. Reversible two-tissue compartments (2TC) and Patlak models were fitted based on the voxel-based time activity curves (TACs), with the parametric images generated subsequently. Additionally, semi-automated segmentation of multiple organs was performed in the dynamic images to measure the SUVmean at different time points and in the parametric images to estimate the mean value of the kinetic parameters of these organs. RESULTS: 18 F-PSMA-11 showed quick accumulation within prostate cancer, as early as 45 s after tracer injection. It was rapidly cleared from blood circulation and predominantly excreted through the urinary system. High and rapid radiotracer accumulation was observed in the liver, spleen, lacrimal glands, and salivary glands, whereas gradual accumulation was observed in the skeleton. Prostate cancer tissue is visualized in all parametric images, and best seen in DV and Patlak Ki images. Patlak Ki showed a good correlation with 2TC Ki values (r = 0.858, p < 0.05) but less noise than 2TC images. A scanning time point of 30-35 min p.i. was then suggested for satisfactory tumor to background ratio. CONCLUSION: Prostate cancer tissue is visible in most parametric images, and is better shown by Patlak Ki and 2TC DV images. Patlak Ki is consistent with, and thus is preferred over, 2TC Ki images for substantially quicker calculation. Based on the dynamic imaging analysis, a shorter uptake time (30-35 min) might be preferred for a better balance of tumor to background ratio.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Gallium Radioisotopes , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...