Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1387688, 2024.
Article in English | MEDLINE | ID: mdl-38784031

ABSTRACT

Background: Mechanical ventilation (MV) is often required in critically ill patients. However, prolonged mechanical ventilation can lead to Ventilator-induced diaphragmatic dysfunction (VIDD), resulting in difficulty in extubation after tracheal intubation, prolonged ICU stay, and increased mortality. At present, the incidence of diabetes is high in the world, and the prognosis of diabetic patients with mechanical ventilation is generally poor. Therefore, the role of diabetes in the development of VIDD needs to be discovered. Methods: MV modeling was performed on C57 mice and DB mice, and the control group was set up in each group. After 12 h of mechanical ventilation, the muscle strength of the diaphragm was measured, and the muscle fiber immunofluorescence staining was used to verify the successful establishment of the MV model. RNA sequencing (RNA-seq) method was used to detect mRNA expression levels of the diaphragms of each group, and then differential expressed gene analysis, Heatmap analysis, WGCNA analysis, Venn analysis, GO and KEGG enrichment analysis were performed. qRT-PCR was used to verify the expression of the selected mRNAs. Results: Our results showed that, compared with C57 control mice, the muscle strength and muscle fiber cross-sectional area of mice after mechanical ventilation decreased, and DB mice showed more obvious in this respect. RNA-seq showed that these differential expressed (DE) mRNAs were mainly related to genes such as extracellular matrix, collagen, elastic fiber and Fbxo32. GO and KEGG enrichment analysis showed that the signaling pathways associated with diabetes were mainly as follows: extracellular matrix (ECM), protein digestion and absorption, PI3K-Akt signaling pathway, calcium signaling pathway, MAPK signaling pathway and AGE-RAGE signaling pathway in diabetic complications, etc. ECM has the closest relationship with VIDD in diabetic mice. The key genes determined by WGCNA and Venn analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-seq. Conclusion: VIDD can be aggravated in diabetic environment. This study provides new evidence for mRNA changes after mechanical ventilation in diabetic mice, suggesting that ECM and collagen may play an important role in the pathophysiological mechanism and progression of VIDD in diabetic mice, and provides some clues for the research, diagnosis, and treatment of VIDD in diabetic context.

2.
ACS Med Chem Lett ; 9(2): 120-124, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29456799

ABSTRACT

Biaryl amides as new RORγt modulators were discovered. The crystal structure of biaryl amide agonist 6 in complex with RORγt ligand binding domain (LBD) was resolved, and both "short" and "long" inverse agonists were obtained by removing from 6 or adding to 6 a proper structural moiety. While "short" inverse agonist (8) recruits a corepressor peptide and dispels a coactivator peptide, "long" inverse agonist (9) dispels both. The two types of inverse agonists can be utilized as potential tools to study mechanisms of Th17 transcriptional network inhibition and related disease biology.

4.
Bioorg Med Chem ; 23(17): 5293-302, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26277758

ABSTRACT

A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes.


Subject(s)
Amides/chemistry , Amides/pharmacology , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Th17 Cells/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Humans , Mice , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/cytology
5.
ACS Med Chem Lett ; 6(7): 787-92, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26191367

ABSTRACT

A novel series of biaryl amides was identified as RORγt inhibitors through core replacement of a starting hit 1. Structure-activity relationship exploration on the biaryl moiety led to discovery of potent RORγt inhibitors with good oral bioavailability and CNS penetration. Compounds 9a and 9g demonstrated excellent in vivo efficacy in EAE mice dose dependently with once daily oral administration.

6.
ACS Med Chem Lett ; 5(1): 65-8, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24900774

ABSTRACT

A novel series of tertiary amines as retinoid-related orphan receptor gamma-t (RORγt) inverse agonists was discovered through agonist/inverse agonist conversion. The level of RORγt inhibition can be enhanced by modulating the conformational disruption of H12 in RORγt LBD. Linker exploration and rational design led to the discovery of more potent indole-based RORγt inverse agonists.

7.
Immunity ; 40(4): 477-89, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24745332

ABSTRACT

We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.


Subject(s)
Benzeneacetamides/pharmacology , Benzhydryl Compounds/pharmacology , Digoxin/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Gene Regulatory Networks/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Multiple Sclerosis/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , T-Lymphocyte Subsets/drug effects , Th17 Cells/drug effects , Androstenols/chemistry , Animals , Benzeneacetamides/chemistry , Benzhydryl Compounds/chemistry , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Lineage/drug effects , Cytokines/metabolism , Digoxin/chemistry , Encephalomyelitis, Autoimmune, Experimental/immunology , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Peptide Fragments/immunology , Protein Binding/drug effects , Structure-Activity Relationship , Systems Biology , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects
8.
Bioorg Med Chem ; 22(2): 692-702, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24388993

ABSTRACT

Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration.


Subject(s)
Amides/pharmacology , Arthritis/drug therapy , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Administration, Oral , Amides/administration & dosage , Amides/chemistry , Animals , Arthritis/chemically induced , Cell Differentiation/drug effects , Collagen , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Th17 Cells
9.
Mol Pharmacol ; 82(4): 583-90, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22700697

ABSTRACT

In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 µM measured by EC50. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.


Subject(s)
Amides/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Th17 Cells/drug effects , Amides/chemistry , Benzamides/pharmacology , Cell Differentiation/drug effects , Circular Dichroism , Genes, Reporter , Humans , Interleukin-17/genetics , Jurkat Cells , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Primary Cell Culture , Protein Stability , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Th17 Cells/cytology , Th17 Cells/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
10.
Food Chem Toxicol ; 46(1): 73-81, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17719161

ABSTRACT

Danshensu (3-(3,4-dihydroxyphenyl) lactic acid) and salvianolic acid B, two natural phenolic acids of caffeic acid derivatives isolated from Salvia miltiorrhiza root of the most widely used traditional Chinese medicine for the treatment of various cardiovascular diseases, have been reported to have potential protective effects from oxidative injury. To better understand their biological functions, the in vitro radical scavenging and antioxidant activities of danshensu and salvianolic acid B were evaluated along with vitamin C. Both danshensu and salvianolic acid B exhibited higher scavenging activities against free hydroxyl radicals (HO()), superoxide anion radicals (O(2)(-)), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals and 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals than vitamin C. In contrary, danshensu and salvianolic acid B showed weaker iron chelating and hydrogen peroxide (H(2)O(2)) scavenging activities than vitamin C. As expressed as vitamin C equivalent capacity (VCEAC), the relative VCEAC values (mg/100ml) were in the order of salvianolic acid B (18.59) > danshensu (12.89) > vitamin C (10.00) by ABTS radical assay. The protective efficiencies against hydrogen peroxide induced human vein vascular endothelial cell damage were correlated with their antioxidant activities. Analysis of structure-activity relationship of these two compounds showed that the condensation and conjugation of danshensu and caffeic acid appears important for antioxidant activity. These results indicated that danshensu and salvianolic acid B are efficient radical scavengers and antioxidants, and salvianolic acid B is superior to danshensu. Their radical scavenging and antioxidant properties might have potential applications in food and healthcare industry.


Subject(s)
Antioxidants/chemistry , Benzofurans/chemistry , Free Radical Scavengers/chemistry , Lactates/chemistry , Ascorbic Acid/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds , Cell Survival/drug effects , Chelating Agents/chemistry , Endothelial Cells/drug effects , Ferrous Compounds/chemistry , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/toxicity , Hydroxyl Radical/chemistry , Oxidants/toxicity , Picrates/chemistry , Plant Roots/chemistry , Salvia/chemistry , Sulfonic Acids/chemistry , Tetrazolium Salts/chemistry , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...