Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Adv Mater ; : e2402309, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780003

ABSTRACT

Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.

2.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594254

ABSTRACT

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

3.
Breast Cancer Res Treat ; 206(1): 45-56, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616207

ABSTRACT

PURPOSE: The significance of postmastectomy radiotherapy (PMRT) in breast cancer patients who initially have clinically node-positive (cN +) status but achieve downstaging to ypN0 following neoadjuvant chemotherapy (NAC) remains uncertain. This study aims to assess the impact of PMRT in this patient subset. METHODS: Patients were enrolled from West China Hospital, Sichuan University from 2008 to 2019. Overall survival (OS), Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), and breast cancer-specific survival (BCSS) were estimated using the Kaplan-Meier method and assessed with the log-rank test. The impact of PMRT was further analyzed by the Cox proportional hazards model. Propensity score matching (PSM) was performed to reduce the selection bias. RESULTS: Of the 333 eligible patients, 189 (56.8%) received PMRT, and 144 (43.2%) did not. At a median follow-up period of 71 months, the five-year LRFS, DMFS, BCSS, and OS rates were 99.1%, 93.4%, 96.4%, and 94.3% for the entire cohort, respectively. Additionally, the 5-year LRFS, DMFS, BCSS, and OS rates were 98.9%, 93.8%, 96.7%, and 94.5% with PMRT and 99.2%, 91.3%, 94.9%, and 92.0% without PMRT, respectively (all p-values not statistically significant). After multivariate analysis, PMRT was not a significant risk factor for any of the endpoints. When further stratified by stage, PMRT did not show any survival benefit for patients with stage II-III diseases. CONCLUSION: In the context of comprehensive treatments, PMRT might be exempted in ypN0 breast cancer patients. Further large-scale, randomized controlled studies are required to investigate the significance of PMRT in this patient subset.


Subject(s)
Breast Neoplasms , Mastectomy , Neoadjuvant Therapy , Neoplasm Staging , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/mortality , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Middle Aged , Neoadjuvant Therapy/methods , Adult , Aged , Retrospective Studies , Radiotherapy, Adjuvant/methods , Chemotherapy, Adjuvant/methods , Lymphatic Metastasis , Neoplasm Recurrence, Local/pathology
4.
Lancet Infect Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38614117

ABSTRACT

BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

5.
J Sci Food Agric ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651728

ABSTRACT

BACKGROUND: The present study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological properties. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity, water holding capacity, differential scanning calorimetry analysis and surface hydrophobicity. RESULTS: LSP was mainly composed of eight subunits (18, 25, 31, 47, 51, 56, 65 and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81-46.85%) in acidic environments. Meanwhile, there was more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%) and water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23 °C) of LSP at pH 5.0 was higher than those (80.10, 80.52 and 71.82 °C) at pH 3.0, 7.0 and 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in an alkaline environment. CONCLUSION: The findings of the present study are anticipated to serve as a valuable reference for the implementation of LSP in the food industry. © 2024 Society of Chemical Industry.

6.
Blood Purif ; 53(5): 386-395, 2024.
Article in English | MEDLINE | ID: mdl-38194932

ABSTRACT

INTRODUCTION: Insufficient withdrawal duration of antithrombotics leads to excessive bleeding after major surgery. We hypothesize that intraoperative hemoadsorption (HA) can reduce postoperative allogeneic transfusion requirements and excessive bleeding events (EBE), without an increase in ischemic/thromboembolic events (ITE) in patients who have taken antithrombotics and undergone nonelective cardiac surgery. METHODS: A total of 460 patients admitted to our hospital from 2018 to 2022 were included in this study and divided into two groups: HA and non-HA. Because of the risk of bias due to differences in antithrombotic type, withdrawal duration, or basic coagulation function, propensity score matching was used for analyses. RESULTS: Out of 154 cases in the HA group, 144 pairs were successfully matched. No HA safety events such as hemolysis, hypotension, or device failure occurred. After matching, the two groups were found to be comparable in preoperative antithrombotic type, withdrawal duration, platelets and coagulation function, and demographic and perioperative characteristics. Although the HA group did not have a reduced incidence of EBE, this group exhibited significant decreases in the transfusion rate and volume, the incidence of ITE, acute kidney injury, and central nervous system injury. CONCLUSIONS: For patients who have undergone nonelective cardiac surgery and taken antithrombotics, HA can simply and safely rebalance the postoperative coagulation system and have associations with reduced transfusion and postoperative ITE.


Subject(s)
Cardiac Surgical Procedures , Fibrinolytic Agents , Humans , Fibrinolytic Agents/therapeutic use , Cardiac Surgical Procedures/adverse effects , Blood Transfusion , Hemorrhage/etiology , Incidence , Sulfadiazine , Retrospective Studies
7.
Nat Prod Res ; : 1-10, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226585

ABSTRACT

Hemiphragma heterophyllum Wall. is commonly used in traditional Yi herbal medicine for treating bellyache and toothache. In the current study, an unreported monoterpene glucoside, (S)-thymoquinol O-(6-O-oleuropeoyl)-ß-d-glucopyranoside (1), together with 11 known glucosides were obtained from the whole herb of H. heterophyllum. Their structures were determined based on a detailed analysis of spectroscopic data and acid hydrolysis and methanolysis reactions. Bioassay results showed that compounds 1 and 10 at 40 mg/kg exhibited significant antinociceptive activity in the acetic acid-induced writhing model, with inhibitions of 59.80% and 64.07%, respectively. Moreover, five of the isolates showed moderate anti-α-glucosidase activities with IC50 values ranging from 5.67 to 46.16 µM.

8.
Opt Express ; 32(1): 179-187, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175047

ABSTRACT

The Tavis-Cummings model is intensively investigated in quantum optics and has important applications in generation of multi-atom entanglement. Here, we employ a superconducting circuit quantum electrodynamic system to study a modified Tavis-Cummings model with directly-coupled atoms. In our device, three superconducting artificial atoms are arranged in a chain with direct coupling through fixed capacitors and strongly coupled to a transmission line resonator. By performing transmission spectrum measurements, we observe different anticrossing structures when one or two qubits are resonantly coupled to the resonator. In the case of the two-qubit Tavis-Cummings model without qubit-qubit interaction, we observe two dips at the resonance point of the anticrossing. The splitting of these dips is determined by Δ λ=2g12+g32, where g1 and g3 are the coupling strengths between Qubit 1 and the resonator, and Qubit 3 and the resonator, respectively. The direct coupling J12 between the two qubits results in three dressed states in the two-qubit Tavis-Cummings model at the frequency resonance point, leading to three dips in the transmission spectrum. In this case, the distance between the two farthest and asymmetrical dips, arising from the energy level splitting, is larger than in the previous case. The frequency interval between these two dips is determined by the difference in eigenvalues (Δ λ=ε 1+-ε 1-), obtained through numerical calculations. What we believe as novel and intriguing experimental results may potentially advance quantum optics experiments, providing valuable insights for future research.

9.
Small ; 20(20): e2307621, 2024 May.
Article in English | MEDLINE | ID: mdl-38111987

ABSTRACT

Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.

10.
Adv Mater ; 36(18): e2310084, 2024 May.
Article in English | MEDLINE | ID: mdl-38101447

ABSTRACT

Magnetic microrobots have been developed for navigating microscale environments by means of remote magnetic fields. However, limited propulsion speeds at small scales remain an issue in the maneuverability of these devices as magnetic force and torque are proportional to their magnetic volume. Here, a microrobotic superstructure is proposed, which, as analogous to a supramolecular system, consists of two or more microrobotic units that are interconnected and organized through a physical (transient) component (a polymeric frame or a thread). The superstructures consist of microfabricated magnetic helical micromachines interlocked by a magnetic gelatin nanocomposite containing iron oxide nanoparticles (IONPs). While the microhelices enable the motion of the superstructure, the IONPs serve as heating transducers for dissolving the gelatin chassis via magnetic hyperthermia. In a practical demonstration, the superstructure's motion with a gradient magnetic field in a large channel, the disassembly of the superstructure and release of the helical micromachines by a high-frequency alternating magnetic field, and the corkscrew locomotion of the released helices through a small channel via a rotating magnetic field, is showcased. This adaptable microrobotic superstructure reacts to different magnetic inputs, which can be used to perform complex delivery procedures within intricate regions of the human body.

11.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158728

ABSTRACT

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Vigna/chemistry , Protein Hydrolysates/chemistry , Plant Proteins/chemistry , Solubility
12.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146105

ABSTRACT

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

13.
Front Oncol ; 13: 1239636, 2023.
Article in English | MEDLINE | ID: mdl-38152364

ABSTRACT

Purpose: To evaluate the efficacy and safety of 3D-printed tissue compensations in breast cancer patients receiving breast reconstruction and postmastectomy radiotherapy (PMRT). Methods and materials: We enrolled patients with breast cancer receiving breast reconstruction and PMRT. The dose distribution of target and skin, conformability, and dose limit of organs at risk (OARs) were collected to evaluate the efficacy of the 3D-printed bolus. Radiation Therapy Oncology Group (RTOG) radiation injury classification was used to evaluated the skin toxicities. Results: A total of 30 patients diagnosed between October 2019 to July 2021 were included for analysis. Among all the patients, the 3D-printed bolus could ensure the dose coverage of planning target volume (PTV) [homogeneity index (HI) 0.12 (range: 0.08-0.18)], and the mean doses of D99%, D98%, D95%, D50%, D2% and Dmean were 4606.29cGy, 4797.04cGy, 4943.32cGy, 5216.07cGy, 5236.10cGy, 5440.28cGy and 5462.10cGy, respectively. The bolus demonstrated an excellent conformability, and the mean air gaps between the bolus and the chest wall in five quadrants were 0.04cm, 0.18cm, 0.04cm, 0.04cm and 0.07cm, respectively. In addition, the bolus had acceptable dosage limit of OARs [ipsilateral lung: Dmean 1198.68 cGy, V5 46.10%, V20 21.66%, V30 16.31%); heart: Dmean 395.40 cGy, V30 1.02%, V40 0.22%; spinal cord planning risk volume (PRV): Dmax 1634 cGy] and skin toxicity (grade 1, 76.0%; grade 2, 21.0%; grade 3, 3.3%). Conclusion: The 3D-printed bolus offers advantages in terms of dose uniformity and controllable skin toxicities in patients receiving breast reconstruction and PMRT. Further research is needed to comprehensively evaluate the effectiveness of the 3Dprinted bolus in this patient subset.

14.
Pharmacol Res ; 197: 106973, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898441

ABSTRACT

Immunogenic cell death (ICD), one of cell-death types through release of damage-associated molecular patterns from dying tumor cells, activates tumor-specific immune response and elicits anti-tumor immunity by traditional radiotherapy and chemotherapy. However, whether natural products could induce ICD in leukemia is not elucidated. Here, we report dietary γ-mangostin eradicates murine primary leukemic cells and prolongs the survival of leukemic mice. As well, it restrains primary leukemic cells and CD34+ leukemic progenitor cells from leukemia patients. Strikingly, γ-mangostin attenuates leukemic cells by inducing ICD as characterized by expression of HSP90B1, ANXA1 and IL1B. Additionally, γ-mangostin accelerates cytoplasmic chromatin fragments generation, promoting DNA damage response, and enhances cGAS activation, leading to up-regulation of chemokines. Meanwhile, it induces HDAC4 degradation and acetylated histone H3 accumulation, which promotes chemokines transcription. Ultimately, CD8+ T cell is activated and recruited by γ-mangostin-induced chemokines in the microenvironment. Our study identifies γ-mangostin triggers ICD and activates cGAS signaling through DNA damage response and epigenetic modification. Therefore, dietary γ-mangostin would act as a potential agent to provoke anti-tumor immunity in the prevention and treatment of leukemia.


Subject(s)
Immunogenic Cell Death , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Leukemia, Myeloid, Acute/drug therapy , Diet , Chemokines , Tumor Microenvironment
15.
Sensors (Basel) ; 23(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896684

ABSTRACT

Tool wear condition significantly influences equipment downtime and machining precision, necessitating the exploration of a more accurate tool wear state identification technique. In this paper, the wavelet packet thresholding denoising method is used to process the acquired multi-source signals and extract several signal features. The set of features most relevant to the tool wear state is screened out by the support vector machine recursive feature elimination (SVM-RFE). Utilizing these selected features, we propose a tool wear state identification model, which utilizes an improved northern goshawk optimization (INGO) algorithm to optimize the support vector machine (SVM), hereby referred to as INGO-SVM. The simulation tests reveal that INGO demonstrates superior convergence efficacy and stability. Furthermore, a milling wear experiment confirms that this approach outperforms five other methods in terms of recognition accuracy, achieving a remarkable accuracy rate of 97.9%.

16.
Nat Commun ; 14(1): 5433, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37669968

ABSTRACT

The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.

17.
JMIR Public Health Surveill ; 9: e47110, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463020

ABSTRACT

BACKGROUND: Young breast cancer patients are more likely to develop aggressive tumor characteristics and a worse prognosis than older women, and different races and ethnicities have distinct epidemiologies and prognoses. However, few studies have evaluated the clinical biological features and relapse patterns in different age strata of young women in Asia. OBJECTIVE: We aimed to explore survival differences and the hazard function in young Chinese patients with breast cancer (BC) by age. METHODS: The patients were enrolled from West China Hospital, Sichuan University. The chi-squared test, a Kaplan-Meier analysis, a log-rank test, a Cox multivariate hazards regression model, and a hazard function were applied for data analysis. Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), breast cancer-specific survival (BCSS), and overall survival (OS) were defined as end points. RESULTS: We included 1928 young BC patients diagnosed between 2008 and 2019. Patients aged 18 to 25, 26 to 30, 31 to 35, and 36 to 40 years accounted for 2.7% (n=53), 11.8% (n=228), 27.7% (n=535), and 57.7% (n=1112) of the patients, respectively. The diagnosis of young BC significantly increased from 2008 to 2019. Five-year LRFS, DMFS, BCSS, and OS for the entire population were 98.3%, 93.4%, 94.4%, and 94%, respectively. Patients aged 18 to 25 years had significantly poorer 5-year LRFS (P<.001), 5-year DMFS (P<.001), 5-year BCSS (P=.04), and 5-year OS (P=.04) than those aged 31 to 35, 26 to 30, and 36 to 40 years. The hazard curves for recurrence and metastasis for the whole cohort continuously increased over the years, while the BC mortality risk peaked at 2 to 3 years and then slowly decreased. When stratified by age, the annualized hazard function for recurrence, metastasis, and BC mortality in different age strata showed significantly different trends, especially for BC mortality. CONCLUSIONS: The annual diagnosis of young BC seemed to increase in Chinese patients, and the distinct age strata of young BC patients did not differ in survival outcome or failure pattern. Our results might provide strategies for personalized management of young BC.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnosis , East Asian People , Prognosis , Proportional Hazards Models , Adolescent , Young Adult , Adult , Survival Analysis
18.
Phytochemistry ; 214: 113795, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487918

ABSTRACT

Herein, five undescribed oleanane-type triterpenoid saponins, namely, psammosaponins A-E, along with nine known compounds, were isolated from the roots of Psammosilene tunicoides. Moreover, part of the ethanolic extract of P. tunicoides was acid-hydrolyzed and three aglycones were isolated from the resulting hydrolysate. The structures of all compounds were established through extensive analysis involving 1D and 2D NMR experiments, HRESIMS measurements, chemical derivatization, and comparison of spectroscopic data with the values reported in the literature. In all, 10 of the isolated saponins and the three aglycones were evaluated in the acetic acid-induced writhing model for their antinociceptive activity. At a dose of 40 mg/kg, these compounds exhibited significant inhibitory effects on the mouse writhing response, with inhibitions ranging from 31.9% to 79.3%. In addition, the structure-activity relationships of the isolates were discussed. Among the isolates, quillaic acid 3-O-glucuronide and 16α-hydroxygypsogenic acid showed better antinociceptive activity with inhibitions of 79.3% and 73.7%, respectively. Both isolates also exhibited antinociceptive activities in hot plate and formalin tests on mice. Their antinociceptive mechanism was explored in lipopolysaccharide-stimulated RAW 264.7 cells. These isolates could significantly inhibit the production of nitric oxide and interleukin-6 and downregulate the expression levels of inducible NO synthase, COX-1, and COX-2.

19.
RSC Adv ; 13(28): 19030-19038, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37388152

ABSTRACT

Zinc isotopic ratios serve as powerful tools for tracing biochemical cycling of metals at Earth's surface, including the distribution, transportation, and enrichment of zinc (Zn) in soil. To conduct such studies and enable inter-laboratory comparisons, high-precision Zn isotopic measurements require the use of soil reference materials (RMs). However, there have been limited reports on the high-precision Zn isotope ratios of soil RMs thus far. In this study, we have developed a two-step Zn chemical separation protocol utilizing Bio-Rad AG MP-1M resin columns. This method has demonstrated excellent reproducibility for measuring the external δ66Zn values (relative to JMC-Lyon) of standard soil reference materials over an extended time period, with a better than 0.06‰ (2SD) precision. Remarkably, this study is the first to report the Zn isotopic compositions of 20 soil reference materials from various soil types in China. With the exception of one sample obtained from a mining area, the Zn isotopic compositions of all the analyzed soil reference materials exhibit remarkable similarity, with an average δ66Zn value of 0.31 ± 0.12‰, which aligns closely with the values observed in igneous rocks. The exceptional sample, with a higher δ66Zn value of 0.61 ± 0.02‰, indicates potential contamination during mining activities.

20.
Lancet Reg Health West Pac ; 34: 100707, 2023 May.
Article in English | MEDLINE | ID: mdl-37283962

ABSTRACT

Background: Despite the success in decreasing varicella-related disease burden, live-attenuated Oka vaccine strain of varicella-zoster virus (vOka) remains neuro-virulence and may establish latency and reactivate, raising safety concerns. Here we aimed to evaluate the safety and immunogenicity of a skin- and neuro-attenuated varicella vaccine candidate (v7D). Methods: This is a randomized, double-blind, placebo-controlled, dose-escalation and age de-escalation phase 1 clinical trial conducted in Liuzhou, China (ChiCTR1900022284). Eligible healthy participants aged 1-49 years, with no history of varicella vaccination and had no history of varicella or herpes zoster were sequentially enrolled and allocated to subcutaneously receive one of the three doses (3.3, 3.9, and 4.2 lg PFU) of v7D, vOka or placebo in a dose-escalation and age de-escalation manner. The primary outcome was safety, assessed by adverse events/reactions within 42 days after vaccination and serious adverse events (SAEs) throughout six months after vaccination. The secondary outcome was immunogenicity, assessed by the VZV IgG antibodies measured with fluorescent antibody to membrane antigen (FAMA) assay. Findings: Between April 2019 and March 2020, totally 224 participants were enrolled. Within 42 days post-vaccination, the incidences of adverse reactions were 37.5%-38.7% in the three doses of v7D groups which were similar to that of the vOka (37.5%) and placebo (34.4%) groups. No SAE has been judged as causally related to vaccination. At 42 days post-vaccination, 100% of children aged 1-12 years in the per-protocol set of immunogenicity cohort of the v7D groups became seropositive. Meanwhile, in the intent-to-treat set of immunogenicity cohort of subjects aged 1-49 years, the geometric mean increases of the three groups of v7D vaccine were 3.8, 5.8 and 3.2, respectively, which were similar to that of the vOka vaccine group (4.4) and significantly higher than that of the placebo group (1.3). Interpretation: The candidate v7D vaccine has been preliminarily shown to be well-tolerated and immunogenic in humans. The data warrant further evaluation of the safety advantage and efficacy of v7D as a varicella vaccine. Funding: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, and Beijing Wantai CO., LTD.

SELECTION OF CITATIONS
SEARCH DETAIL
...