Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 591
Filter
1.
Ecotoxicol Environ Saf ; 282: 116725, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002377

ABSTRACT

The cell wall serves as the primary barrier against the entry of heavy metal ions into cells. However, excessive accumulation of heavy metals within plants can lead to alterations in the spatial structure and physical properties of the cell wall, thereby affecting the capacity of plants to capture heavy metals. Proline (Pro) is involved in the synthesis of the cell wall, modulating the stability and integrity of its structure. Extensins, core proteins that maintain the cell wall structure, are proline/hydroxyproline-rich glycoproteins that contain the characteristic sequence Ser-[Pro]3-5. They act as intermediates in the regulation of biological processes such as cell wall synthesis, assembly, and signal transduction, typically forming a network structure of cell wall proteins through cross-linking with pectin. This network is essential for the self-assembly expansion of the plant cell wall and plays an indispensable role in cell wall stress signal transduction through its interaction with intracellular signalling molecules. However, the mechanisms by which Pro affects the synthesis of cell wall structural proteins, cell wall assembly, and the sensing of cell wall stress under heavy metal stress remain unclear. This review, from the perspectives of biochemistry and molecular biology, comprehensively elaborates on the impact of Pro and Pro-rich proteins on the structure and function of the cell wall. These findings emphasize the mechanism by which Pro enhances the ability of the cell wall to capture heavy metals, providing new research ideas for the use of genetic engineering to manipulate cell wall synthesis and repair, thereby reducing the phytotoxicity of heavy metals.

2.
World J Gastroenterol ; 30(25): 3132-3139, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39006380

ABSTRACT

In this editorial, we comment on the article by Chen et al. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a global public health burden whose incidence has risen concurrently with overweight and obesity. Given its detrimental health impact, early identification of at-risk individuals is crucial. MAFLD diagnosis is based on evidence of hepatic steatosis indicated by liver biopsy, imaging, or blood biomarkers, and one of the following conditions: Overweight/ obesity, type 2 diabetes mellitus, or metabolic dysregulation. However, in large-scale epidemiological studies, liver biopsies are not feasible. The application of techniques such as ultrasonography, computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy is restricted by their limited sensitivity, low effectiveness, high costs, and need for specialized software. Blood biomarkers offer several advantages, particularly in large-scale epidemiological studies or clinical scenarios where traditional imaging techniques are impractical. Analysis of cumulative effects of excess high-normal blood alanine aminotransferase (ALT) levels of blood ALT levels could facilitate identification of at-risk patients who might not be detected through conventional imaging methods. Accordingly, investigating the utility of blood biomarkers in MAFLD should enhance early detection and monitoring, enabling timely intervention and management and improving patient outcomes.


Subject(s)
Alanine Transaminase , Biomarkers , Humans , Biomarkers/blood , Alanine Transaminase/blood , Liver/diagnostic imaging , Liver/pathology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Risk Factors , Obesity/complications , Obesity/diagnosis , Obesity/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Early Diagnosis
3.
World J Methodol ; 14(2): 91889, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38983655

ABSTRACT

BACKGROUND: However, the connection between smoking and the prognosis of patients with bladder cancer remains unclear. AIM: To determine whether smoking is linked to the recurrence and progression of bladder cancer. METHODS: As of July 20, 2022, relevant English-language research was identified by searching PubMed, the Web of Science, and the Cochrane Library. We pooled the available data from the included studies using a random effects model. Subgroup analysis and sensitivity analysis were also conducted. RESULTS: A total of 12 studies were included in this meta-analysis. The combined analysis revealed that tobacco exposure was associated with a significantly greater recurrence rate than nonsmoking status [odd ratios (OR) = 1.76, 95%CI: 1.84-2.93], and the progression of bladder cancer was significantly greater in smokers than in nonsmokers (OR = 1.21, 95%CI: 1.02-1.44). Stratified analysis further revealed that current smokers were more likely to experience relapse than never-smokers were (OR = 1.85, 95%CI: 1.11-3.07). Former smokers also had a greater risk of relapse than did never-smokers (OR = 1.73, 95%CI: 1.09-2.73). Subgroup analysis indicated that non-Caucasians may be more susceptible to bladder cancer recurrence than Caucasians are (OR = 2.13, 95%CI: 1.74-2.61). CONCLUSION: This meta-analysis revealed that tobacco exposure may be a significant risk factor for both the recurrence and progression of bladder cancer.

4.
J Cell Mol Med ; 28(13): e18530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961673

ABSTRACT

Tumour morphology (tumour burden score (TBS)) and liver function (albumin-to-alkaline phosphatase ratio (AAPR)) have been shown to correlate with outcomes in intrahepatic cholangiocarcinoma (ICC). This study aimed to evaluate the combined predictive effect of TBS and AAPR on survival outcomes in ICC patients. We conducted a retrospective analysis using a multicentre database of ICC patients who underwent curative surgery from 2011 to 2018. The Kaplan-Meier method was employed to examine the relationship between a new index (combining TBS and AAPR) and long-term outcomes. The predictive efficacy of this index was compared to other conventional indicators. A total of 560 patients were included in the study. Based on TBS and AAPR stratification, patients were classified into three groups. Kaplan-Meier curves demonstrated that 124 patients with low TBS and high AAPR had the best overall survival (OS) and recurrence-free survival (RFS), while 170 patients with high TBS and low AAPR had the worst outcomes (log-rank p < 0.001). Multivariate analyses identified the combined index as an independent predictor of OS and RFS. Furthermore, the index showed superior accuracy in predicting OS and RFS compared to other conventional indicators. Collectively, this study demonstrated that the combination of liver function and tumour morphology provides a synergistic effect in evaluating the prognosis of ICC patients. The novel index combining TBS and AAPR effectively stratified postoperative survival outcomes in ICC patients undergoing curative resection.


Subject(s)
Alkaline Phosphatase , Bile Duct Neoplasms , Cholangiocarcinoma , Tumor Burden , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/surgery , Cholangiocarcinoma/blood , Cholangiocarcinoma/mortality , Female , Male , Alkaline Phosphatase/blood , Middle Aged , Prognosis , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/blood , Aged , Retrospective Studies , Kaplan-Meier Estimate , Biomarkers, Tumor/blood
5.
Hum Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858338

ABSTRACT

We aim to investigate the effect of RVG-Lamp2b-modified exosomes (exos) loaded with neurotrophin-3 (NT-3) on facial nerve injury. Exos were collected from control cells (Ctrl Exo) or bone marrow mesenchymal stem cells co-transfected with RVG-Lamp2b and NT-3 plasmids (RVG-NT-3 Exo) by gradient centrifugation and identified by western blotting, transmission electron microscopy, and nanoparticle tracking analysis. Effect of RVG-NT-3 Exo on oxidative stress damage was determined by analysis of the morphology, viability, and ROS production of neurons. Effect of RVG-NT-3 Exo on facial nerve axotomy (FNA) was determined by detecting ROS production, neuroinflammatory reaction, microglia activation, facial motor neuron (FMN) death, and myelin sheath repair. Loading NT-3 and modifying with RVG-Lamp2b did not alter the properties of the exos. Moreover, RVG-NT-3 Exo could effectively target neurons to deliver NT-3. Treatment with RVG-NT-3 Exo lowered H2O2-induced oxidative stress damage in primary neurons and Nsc-34 cells. RVG-NT-3 Exo treatment significantly decreased ROS production, neuroinflammatory response, FMN death, and elevated microglia activation and myelin sheath repair in FNA rat models. Our findings suggested that RVG-NT-3 Exo-mediated delivery of NT-3 is effective for the treatment of facial nerve injury.

6.
Eur Radiol Exp ; 8(1): 67, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902467

ABSTRACT

BACKGROUND: We compared magnetic resonance imaging (MRI) turbo spin-echo images reconstructed using a deep learning technique (TSE-DL) with standard turbo spin-echo (TSE-SD) images of the lumbar spine regarding image quality and detection performance of common degenerative pathologies. METHODS: This prospective, single-center study included 31 patients (15 males and 16 females; aged 51 ± 16 years (mean ± standard deviation)) who underwent lumbar spine exams with both TSE-SD and TSE-DL acquisitions for degenerative spine diseases. Images were analyzed by two radiologists and assessed for qualitative image quality using a 4-point Likert scale, quantitative signal-to-noise ratio (SNR) of anatomic landmarks, and detection of common pathologies. Paired-sample t, Wilcoxon, and McNemar tests, unweighted/linearly weighted Cohen κ statistics, and intraclass correlation coefficients were used. RESULTS: Scan time for TSE-DL and TSE-SD protocols was 2:55 and 5:17 min:s, respectively. The overall image quality was either significantly higher for TSE-DL or not significantly different between TSE-SD and TSE-DL. TSE-DL demonstrated higher SNR and subject noise scores than TSE-SD. For pathology detection, the interreader agreement was substantial to almost perfect for TSE-DL, with κ values ranging from 0.61 to 1.00; the interprotocol agreement was almost perfect for both readers, with κ values ranging from 0.84 to 1.00. There was no significant difference in the diagnostic confidence or detection rate of common pathologies between the two sequences (p ≥ 0.081). CONCLUSIONS: TSE-DL allowed for a 45% reduction in scan time over TSE-SD in lumbar spine MRI without compromising the overall image quality and showed comparable detection performance of common pathologies in the evaluation of degenerative lumbar spine changes. RELEVANCE STATEMENT: Deep learning-reconstructed lumbar spine MRI protocol enabled a 45% reduction in scan time compared with conventional reconstruction, with comparable image quality and detection performance of common degenerative pathologies. KEY POINTS: • Lumbar spine MRI with deep learning reconstruction has broad application prospects. • Deep learning reconstruction of lumbar spine MRI saved 45% scan time without compromising overall image quality. • When compared with standard sequences, deep learning reconstruction showed similar detection performance of common degenerative lumbar spine pathologies.


Subject(s)
Deep Learning , Lumbar Vertebrae , Magnetic Resonance Imaging , Humans , Male , Female , Prospective Studies , Middle Aged , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging , Adult , Aged , Signal-To-Noise Ratio , Spinal Diseases/diagnostic imaging
7.
Virol Sin ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914259

ABSTRACT

Next-generation sequencing (NGS) has significantly improved the accuracy and efficiency of pathogen diagnosis for a wide range of diseases. In this study, viral metagenomics analysis was conducted on fecal and tissue samples from a 13-year-old recipient of hematopoietic stem cell transplantation (HSCT) afflicted with severe lingual papillomatosis. The analysis revealed a high abundance of adeno-associated virus 2 (AAV2), alongside potential helper viruses, herpesvirus type 1 (HSV-1), and the uncommon adenovirus serotype 18 (AdV18). Although a direct causal relationship was not definitively established, the concurrence of these viruses indicated a plausible link to the development of severe lingual papillomatosis in immunocompromised individuals. Notably, the study generated a complete genome sequence of AdV18, offering insights into adenovirus genetic variability, origin, and pathogenicity. Noteworthy findings include three amino acid substitutions in the polymerase and one in the hexon, distinguishing them from previously published strains of AdV18. Phylogenetic analysis unveiled a close relationship between both the polymerase and hexon regions of AdV18 in our study and previously reported AdV18 sequences. This study underscores the pivotal role of comprehensive viral scrutiny in elucidating infections among HSCT patients with lingual papillomatosis.

8.
J Hazard Mater ; 476: 134873, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38908182

ABSTRACT

Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 µg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 µg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.

9.
Theranostics ; 14(8): 3385-3403, 2024.
Article in English | MEDLINE | ID: mdl-38855175

ABSTRACT

Rationale: It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Methods: Apoptotic pathway deficient mice including Fas mutant (Fasmut ) and Fas ligand mutant (FasLmut ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis. Ovarian function was characterized by morphological analysis, biochemical examination and cellular assays. Mechanistical studies were assessed by combinations of transcriptomic and proteomic analysis as well as molecular assays. CYP17A1-Cre; Axin1fl /fl mice was established to verify the role of WNT signaling during ovarian folliculogenesis. Polycystic ovarian syndrome (PCOS) mice and 15-month-old mice were used with apoV replenishment to further validate the therapeutic effects of apoVs based on WNT signaling regulation. Results: We show that systemic administration of mesenchymal stem cell (MSC)-derived apoptotic vesicles (MSC-apoVs) can ameliorate impaired ovarian folliculogenesis, PCOS phenotype, and reduced birth rate in Fasmut and FasLmut mice. Mechanistically, transcriptome analysis results revealed that MSC-apoVs downregulated a number of aberrant gene expression in Fasmut mice, which were enriched by kyoto encyclopedia of genes and genomes (KEGG) pathway analysis in WNT signaling and sex hormone biosynthesis. Furthermore, we found that apoptotic deficiency resulted in aberrant WNT/ß-catenin activation in theca and mural granulosa cells, leading to responsive action of dickkopf1 (DKK1) in the cumulus cell and oocyte zone, which downregulated WNT/ß-catenin expression in oocytes and, therefore, impaired ovarian folliculogenesis via NPPC/cGMP/PDE3A/cAMP cascade. When WNT/ß-catenin was specially activated in theca cells of CYP17A1-Cre; Axin1fl /fl mice, the same ovarian impairment phenotypes observed in apoptosis-deficient mice were established, confirming that aberrant activation of WNT/ß-catenin in theca cells caused the impairment of ovarian folliculogenesis. We firstly revealed that apoVs delivered WNT membrane receptor inhibitor protein RNF43 to ovarian theca cells to balance follicle homeostasis through vesicle-cell membrane integration. Systemically infused RNF43-apoVs down-regulated aberrantly activated WNT/ß-catenin signaling in theca cells, contributing to ovarian functional maintenance. Since aging mice have down-regulated expression of WNT/ß-catenin in oocytes, we used MSC-apoVs to treat 15-month-old mice and found that MSC-apoVs effectively ameliorated the ovarian function and fertility capacity of these aging mice through rescuing WNT/ß-catenin expression in oocytes. Conclusion: Our studies reveal a previously unknown association between apoVs and ovarian folliculogenesis and suggest an apoV-based therapeutic approach to improve oocyte function and birth rates in PCOS and aging.


Subject(s)
Apoptosis , Mesenchymal Stem Cells , Ovarian Follicle , Ovary , Polycystic Ovary Syndrome , Wnt Signaling Pathway , Animals , Female , Polycystic Ovary Syndrome/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Disease Models, Animal , Aging/physiology , Fas Ligand Protein/metabolism , Fas Ligand Protein/genetics
10.
ACS Nano ; 18(26): 16726-16742, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888383

ABSTRACT

Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.


Subject(s)
Anti-Bacterial Agents , Carbon , Kupffer Cells , Sepsis , Animals , Mice , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sepsis/drug therapy , Sepsis/microbiology , Sepsis/pathology , Carbon/chemistry , Carbon/pharmacology , Apoptosis/drug effects , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Male , Quantum Dots/chemistry , Copper/chemistry , Copper/pharmacology , Microbial Sensitivity Tests
12.
Sci Total Environ ; 946: 174207, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38914327

ABSTRACT

Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.


Subject(s)
Biodegradation, Environmental , Dibutyl Phthalate , Ribosomes , Soil Pollutants , Soil Pollutants/metabolism , Dibutyl Phthalate/metabolism , Ribosomes/metabolism , Soil Microbiology , Gene Expression , Burkholderiaceae/metabolism , Burkholderiaceae/genetics
13.
Brain Commun ; 6(3): fcae156, 2024.
Article in English | MEDLINE | ID: mdl-38764775

ABSTRACT

Current histological classification of low-grade glioneuronal tumours does not adequately represent their underlying biology. The neural lineage(s) and differentiation stage(s) involved and the cell state(s) affected by the recurrent genomic alterations are unclear. Here, we describe dysregulated oligodendrocyte lineage developmental programmes in three low-grade glioneuronal tumour subtypes. Ten dysembryoplastic neuroepithelial tumours, four myxoid glioneuronal tumours and five rosette-forming glioneuronal tumours were collected. Besides a comprehensive characterization of clinical features, known diagnostic markers and genomic alterations, we used comprehensive immunohistochemical stainings to characterize activation of rat sarcoma/mitogen-activated protein kinase pathway, involvement of neuronal component, resemblance to glial lineages and differentiation blockage along the stages of oligodendrocyte lineage. The findings were further complemented by gene set enrichment analysis with transcriptome data of dysembryoplastic neuroepithelial tumours from the literature. Dysembryoplastic neuroepithelial tumours, myxoid glioneuronal tumours and rosette-forming glioneuronal tumours occur at different ages, with symptoms closely related to tumour location. Dysembryoplastic neuroepithelial tumours and myxoid glioneuronal tumours contain oligodendrocyte-like cells and neuronal component. Rosette-forming glioneuronal tumours contained regions of rosette-forming neurocytic and astrocytic features. Scattered neurons, identified by neuronal nuclei antigen and microtubule-associated protein-2 staining, were consistently observed in all dysembryoplastic neuroepithelial tumours and myxoid glioneuronal tumours examined, but only in one rosette-forming glioneuronal tumour. Pervasive neurofilament-positive axons were observed only in dysembryoplastic neuroepithelial tumour and myxoid glioneuronal tumour samples. Alterations in B-Raf proto-oncogene, serine/threonine kinase, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3 and platelet-derived growth factor receptor alpha occurred in a mutually exclusive manner, coinciding with strong staining of phospho-p44/42 mitogen-activated protein kinase and low apoptotic signal. All dysembryoplastic neuroepithelial tumours, myxoid glioneuronal tumours and the neurocytic regions of rosette-forming glioneuronal tumours showed strong expression of neuron-glia antigen 2, platelet-derived growth factor receptor alpha (markers of oligodendrocyte precursor cells) and neurite outgrowth inhibitor-A (a marker of developing oligodendrocytes), but lacked the expression of oligodendrocyte markers ectonucleotide pyrophosphatase/phosphodiesterase family member 6 and myelin basic protein. Notably, transcriptomes of dysembryoplastic neuroepithelial tumours were enriched in oligodendrocyte precursor cell signature, but not in signatures of neural stem cells, myelinating oligodendrocytes and astrocytes. Dysembryoplastic neuroepithelial tumour, myxoid glioneuronal tumour and rosette-forming glioneuronal tumour resemble oligodendrocyte precursor cells, and their enrichment of oligodendrocyte precursor cell phenotypes is closely associated with the recurrent mutations in rat sarcoma/mitogen-activated protein kinase pathway.

14.
Front Neurol ; 15: 1387399, 2024.
Article in English | MEDLINE | ID: mdl-38707999

ABSTRACT

Background: Infant, junior, and adult patients with neuronal intranuclear inclusion disease (NIID) present with various types of seizures. We aimed to conduct a systematic literature review on the clinical characteristics of NIID with seizures to provide novel insight for early diagnosis and treatment and to improve prognosis of these patients. Methods: We used keywords to screen articles related to NIID and seizures, and data concerning the clinical characteristics of patients, including demographic features, disease characteristics of the seizures, treatment responses, imaging examinations, and other auxiliary examination results were extracted. Results: The included studies comprised 21 patients with NIID with seizures. The most common clinical phenotypes were cognitive impairment (76.20%) and impaired consciousness (57.14%), and generalized onset motor seizures (46.15%) represented the most common type. Compared with infantile and juvenile cases, the use of antiepileptic drugs in adults led to significant seizure control and symptom improvement, in addition to providing a better prognosis. The number of GGC sequence repeats in the NOTCH2NLC gene in six NIID patients with seizures who underwent genetic testing ranged 72-134. Conclusion: The most common clinical phenotypes in patients with NIID with seizures were cognitive impairment and consciousness disorders. Patients with NIID presented with various types of seizures, with the most common being generalized onset motor seizures. Adult patients had a better prognosis and were relatively stable. The early diagnosis of NIID with seizures is of great significance for treatment and to improve prognosis.

15.
Clin Transl Med ; 14(5): e1652, 2024 May.
Article in English | MEDLINE | ID: mdl-38741204

ABSTRACT

BACKGROUND: Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS: A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS: Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS: HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Early Detection of Cancer , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Female , Male , DNA Methylation/genetics , Middle Aged , Prognosis , Early Detection of Cancer/methods , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged , Adult
16.
Ecol Evol ; 14(5): e11214, 2024 May.
Article in English | MEDLINE | ID: mdl-38725828

ABSTRACT

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

17.
Neuroscience ; 551: 196-204, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38810690

ABSTRACT

Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.


Subject(s)
Memory Consolidation , Neurons , Humans , Memory Consolidation/physiology , Animals , Neurons/physiology , Hippocampus/physiopathology , Hippocampus/physiology , Brain Waves/physiology , Epilepsy/physiopathology , Alzheimer Disease/physiopathology
18.
World J Gastroenterol ; 30(9): 1257-1260, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577178

ABSTRACT

The increasing popularity of endoscopic submucosal dissection (ESD) as a treatment for early gastric cancer has highlighted the importance of quality assessment in achieving curative resections. This article emphasizes the significance of evaluating ESD quality, not only for curative cases but also for non-curative ones. Postoperative assessment relies on the endoscopic curability (eCura) classification, but management strategies for eCuraC-1 tumour with a positive horizontal margin are unclear. Current research primarily focuses on comparing additional surgical procedures in high-risk patients, while studies specifically targeting eCuraC-1 patients are limited. Exploring management strategies and follow-up outcomes for such cases could provide valuable insights. Furthermore, the application of molecular imaging using near-infrared fluorescent tracers holds promise for precise tumour diagnosis and navigation, potentially impacting the management of early-stage gastric cancer patients. Advancing research in these areas is essential for improving the overall efficacy of endoscopic techniques and refining treatment indications.


Subject(s)
Endoscopic Mucosal Resection , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Endoscopic Mucosal Resection/adverse effects , Endoscopic Mucosal Resection/methods , Treatment Outcome , Retrospective Studies , Gastric Mucosa/diagnostic imaging , Gastric Mucosa/surgery , Gastric Mucosa/pathology
19.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583640

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Subject(s)
Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
20.
Int Wound J ; 21(4): e14795, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572781

ABSTRACT

This study investigates the effects of comprehensive nursing interventions on wound pain in patients undergoing catheter insertion for peritoneal dialysis. Sixty patients who underwent catheter insertion for peritoneal dialysis from January 2021 to January 2023 at our hospital were selected as subjects and randomly divided into an experimental group and a control group using a random number table method. The control group received routine nursing care, while the experimental group was subjected to comprehensive nursing interventions. The study compared the impact of nursing measures on visual analogue scale (VAS), self-rating anxiety scale (SAS), self-rating depression scale (SDS) and nursing satisfaction between the two groups. The analysis revealed that on the third, fifth and seventh days post-intervention, the experimental group's wound VAS scores were significantly lower than those of the control group (p < 0.001). Furthermore, levels of anxiety and depression were markedly lower in the experimental group compared with the control group (p < 0.001). In addition, the nursing satisfaction rate was significantly higher in the experimental group than in the control group (96.67% vs. 73.33%, p = 0.011). This study indicates that the application of comprehensive nursing interventions in patients undergoing catheter insertion for peritoneal dialysis is highly effective. It can alleviate wound pain and negative emotions to a certain extent, while also achieving high patient satisfaction, thus demonstrating significant clinical value.


Subject(s)
Pain , Peritoneal Dialysis , Humans , Anxiety/etiology , Anxiety/therapy , Anxiety Disorders , Catheters
SELECTION OF CITATIONS
SEARCH DETAIL
...