Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 629(Pt A): 388-398, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087554

ABSTRACT

As a promising high energy density cathode, single-crystal Ni-rich cathode face poor diffusion dynamics, which leads to poor structural evolution, poor cyclic stability and unfavorable rate performance, thus impeding its wider application. Herein, the strategy of synergistic surface modification by ionic conductor coating and trace element doping is delicately designed. The surface protective Li3BO3 layer is wrapped on the single-crystal LiNi0.83Co0.11Mn0.06O2 (NCM83), which can improve the compatibility of cathode/electrolyte with reduced interface resistance. While Zr is incorporated into bulk to stabilize the crystal structure and migration channel. This synergistic strategy achieves the improvement of ionic transport and structural stability of single-crystal NCM83 (Zr-NCM83@B) from the outer surface to the inner body. As expected, the modified cathode Zr-NCM83@B demonstrates a satisfying electrochemical performance. It delivers a high reversible capacity of 169 mAh g-1 in coin-type half-cell at 4C within 3.0-4.3 V. Remarkably, it displays excellent capacity retention of 83.5 % in Zr-NCM83@B || graphite pouch-type full-cell over 1400 cycles at 1C with high voltage range of 2.8-4.4 V. This synergistic surface modification provides a reference for commercial development of advanced single-crystal Ni-rich cathode under harsh testing conditions.

2.
ChemSusChem ; 14(14): 2984-2991, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34050630

ABSTRACT

Na3 V2 O2 (PO4 )2 F (NVOPF) as an attractive electrode material has received much attention based on the one-electron reaction of V4+ /V5+ . However, the electrochemical reactions involving lower vanadium valences were not investigated till now. Herein, a composite of graphene decorated nanosheet-assembled NVOPF microflowers (NVOPF/G) was synthesized and the multi-electron reaction of NVOPF/G was conducted by controlling the operation voltage windows. The reaction mechanism, structural changes, and vanadium valences during the insertion/extraction of Li ions (from 2 to 6) were elucidated clearly by in-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy. Theoretical computations also revealed the Li-ion locations in the structure of NaV2 O2 (PO4 )2 F. Due to the additional redox couple of V3+ /V4+ , NVOPF/G displayed a much higher initial capacity of 183.3 mAh g-1 in the wider voltage window of 1.0-4.8 V than that of 2.5-4.8 V (129.3 mAh g-1 ). Moreover, excellent Li-storage performance of NVOPF/G at a lower voltage (≤2.5 V) with the active reaction of V2+ /V3+ /V4+ was obtained for the first time, demonstrating the high potential of NVOPF/G as an anode material for Li ion storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...