Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2309034, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453687

ABSTRACT

Mechanoluminescence (ML) materials are featured with the characteristic of "force to light" in response to external stimuli, which have made great progress in artificial intelligence and optical sensing. However, how to effectively enable ML in the material is a daunting challenge. Here, a Lu3 Al2 Ga3 O12 :Cr3+ (LAGO: Cr3+ ) near infrared (NIR) ML material peaked at 706 nm is reported, which successfully realizes the key to unlock ML by the lattice-engineering strategy Ga3+ substitution for Al3+ to "grow" oxygen vacancy (Ov ) defects. Combined with thermoluminescence measurements, the observed ML is due to the formation of defect levels and the ML intensity is proportional to it. It is confirmed by X-ray photoelectron spectroscopy and electron paramagnetic resonance that such a process is dominated by Ov , which plays a crucial role in turning on ML in this compound. In addition, potential ML emissions from 4 T2 and 2 E level transitions are discussed from both experimental and theoretical aspects. This study reveals the mechanism of the change in ML behavior after cation substitution, and it may have important implications for the practical application of Ov defect-regulated turn-on of ML.

2.
Luminescence ; 38(8): 1465-1476, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37231988

ABSTRACT

Mechanoluminescence (ML) materials have found potential applications in information storage, anti-counterfeiting, and stress sensing. Conventional stress sensing based on absolute ML intensity is prone to significant mistakes owing to the unpredictability of measurement surroundings. However, implementing a ratiometric ML sensing technique may considerably ameliorate this issue. In this study, a single activator-doped gallate material (LiGa5 O8 :Pr3+ ) is proposed to determine the relationship between the ML intensity and the change in local positional symmetry that occurs when the material is subjected to stress. The sensing reliability of the ML intensity ratio under different factors (Force; Content; Thickness and Materials) is systematically analyzed, where the factor that has the greatest effect on the proportional ML is the concentration, with the ML intensity asymmetry ratio decreasing from 1.868 to 1.300 varying concentration at constant stress. The colour-resolved visualization of stress sensing is further realized, which opens a new path for a ratiometric ML-based strategy to improve the reliability of stress sensing.


Subject(s)
Reproducibility of Results
3.
Inorg Chem ; 62(12): 4894-4902, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36917791

ABSTRACT

An activator's selective occupation of a host is of great significance for designing high-quality white light-emitting diode phosphors, while achieving a full-spectrum single-phase white light emission phosphor is challenging. In this study, a boron phosphate solid-solution Na2Y2(BO3)2-x(PO4)xO:0.005 Bi3+ (NYB2-xPxO:0.005 Bi3+) white phosphor was designed by selectively occupying Bi3+ activators in the mixed anionic groups. The substitutes of the anionic unit (BO3)3- by the (PO4)3- unit are supposed to force part of the Bi3+ ion to enter the Na lattice site, which produces an intense orange-red emission peaked at 590 nm. In parallel, spectral tuning from blue to white light and an internal quantum efficiency of 56.42% was obtained, and the thermal stabile luminescence intensity remains at 94.2% of the initial intensity after four heating-cooling cycles from 30 to 210 °C (luminescent intensity is 83.6% of room temperature (RT) at 150 °C, with excellent thermal stability and recovery performance). Finally, an excellent color rendering index (Ra = 90.8 and R9 = 85) was demonstrated for white light-emitting diode devices using only an NYB1.5P0.5O:0.005 Bi3+ phosphor and a near-ultraviolet (n-UV) 365 nm LED chip. This work delves into the different selective occupancy of Bi3+ ions and explores a new avenue for the design of phosphors for full-spectrum white light emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...