Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 24(1): 219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849824

ABSTRACT

Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Humans , Animals , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/drug effects
2.
Int Immunopharmacol ; 132: 111938, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593502

ABSTRACT

BACKGROUND: Sepsis is a disease characterized by infection-induced multiorgan dysfunction, which can progress to septic shock if not promptly treated. Early identification of sepsis is crucial for its treatment. However, there are currently limited specific biomarkers for sepsis or septic shock. This study aims to identify potential biomarkers for sepsis and septic shock. METHODS: We analyzed single-cell transcriptomic data of peripheral blood mononuclear cells (PBMCs) from healthy individuals, sepsis and septic shock patients, identified differences in gene expression and cell-cell communication between different cell types during disease progression. Moreover, our analyses were further validated with flow cytometry and bulk RNA-seq data. RESULTS: Our study elucidates the alterations in cellular proportions and cell-cell communication among healthy controls, sepsis, and septic shock patients. We identified a specific augmentation in the Resistin signaling within sepsis monocytes, mediated via RETN-CAP1 ligand-receptor pairs. Additionally, we observed enhanced IL16 signaling within monocytes from septic shock patients, mediated through IL16-CD4 ligand-receptor pairs. Subsequently, we confirmed our findings by validating the increase in CAP-1+ monocytes in sepsis and IL16+ monocytes in septic shock in mouse models. And a significant upregulation of CAP-1 and IL16 was also observed in the bulk RNA-seq data from patients with sepsis and septic shock. Furthermore, we identified four distinct clusters of CD14+ monocytes, highlighting the heterogeneity of monocytes in the progress of sepsis. CONCLUSIONS: In summary, our work demonstrates changes in cell-cell communication of healthy controls, sepsis and septic shock, confirming that the molecules CAP-1 and IL16 on monocytes may serve as potential diagnostic markers for sepsis and septic shock, respectively. These findings provide new insights for early diagnosis and stratified treatment of the disease.


Subject(s)
Biomarkers , Cell Communication , Sepsis , Shock, Septic , Single-Cell Analysis , Humans , Shock, Septic/blood , Shock, Septic/immunology , Animals , Sepsis/immunology , Sepsis/diagnosis , Sepsis/genetics , Mice , Male , Monocytes/immunology , Monocytes/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Sequence Analysis, RNA , Female , Mice, Inbred C57BL , Middle Aged
3.
Free Radic Biol Med ; 212: 22-33, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38101584

ABSTRACT

Cisplatin is an effective chemotherapy drug widely used in the treatment of various solid tumors. However, the clinical usage of cisplatin is limited by its nephrotoxicity. Isorhamnetin, a natural flavanol compound, displays remarkable pharmacological effects, including anti-inflammatory and anti-oxidation. In this study, we aimed to investigate the potential of isorhamnetin in alleviating acute kidney injury induced by cisplatin. In vitro study showed that isorhamnetin significantly suppressed the cytotoxic effects of cisplatin on human tubular epithelial cells. Furthermore, isorhamnetin exerted significantly inhibitory effects on cisplatin-induced apoptosis and inflammatory response. In acute kidney injury mice induced by a single intraperitoneal injection with 20 mg/kg cisplatin, oral administration of isorhamnetin two days before or 2 h after cisplatin injection effectively ameliorated renal function and renal tubule injury. Transcriptomics RNA-seq analysis of the mice kidney tissues suggested that isorhamnetin treatment may protect against cisplatin-induced nephrotoxicity via PGC-1α mediated fatty acid oxidation. Isorhamnetin achieved significant enhancements in the lipid clearance, ATP level, as well as the expression of PGC-1α and its downstream target genes PPARα and CPT1A, which were otherwise impaired by cisplatin. In addition, the protection effects of isorhamnetin against cisplatin-induced nephrotoxicity were abolished by a PGC-1α inhibitor, SR-18292. In conclusion, our findings indicate that isorhamnetin could protect against cisplatin-induced acute kidney injury by inducing PGC-1α-dependent reprogramming of fatty acid oxidation, which highlights the clinical potential of isorhamnetin as a therapeutic approach for the management of cisplatin-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Quercetin/analogs & derivatives , Mice , Humans , Animals , Cisplatin/toxicity , Antineoplastic Agents/toxicity , Antineoplastic Agents/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney/metabolism , Apoptosis , Fatty Acids/metabolism
4.
Biochem Biophys Res Commun ; 687: 149173, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37944469

ABSTRACT

To deeply explore the intervention effects of ischelium on the cognitive memory decline in naturally aging mice and its potential mechanisms, we randomly divided mice into four groups: young control group (C), elderly group (M), ischelium low-dose group (L), and ischelium high-dose group (H). The experiment lasted for 12 weeks. We employed the Y-maze test, open field test, and conditioned fear test to evaluate the memory functions of each group. Through HE staining and electron microscopy, we observed morphological changes in the mouse hippocampus. RT-PCR was used to detect changes in the expression of factors related to cognitive function in the hippocampus of elderly mice. We analyzed the changes in the Nrf2/HO-1 pathway and the inflammatory factors IL-1ß and TNF-α using elisa. Additionally, we examined the enzymatic activities of SOD, CAT, GSH-Px, and MDA in the hippocampus and analyzed the compositional changes of gut microbiota in mice using 16S technology. Our results indicate that ischelium effectively ameliorates cognitive impairments in elderly mice.


Subject(s)
Cognitive Dysfunction , Oxidative Stress , Humans , Mice , Animals , Aged , Aging , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognition , Maze Learning , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...