Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 15: 96, 2019.
Article in English | MEDLINE | ID: mdl-31452672

ABSTRACT

BACKGROUND: Stalk lodging is an impediment to improving profitability and production efficiency in maize. Lodging resistance, a comprehensive indicator to appraise genotypes, requires both characterization of mechanical properties in laboratory and investigation of lodging percentage in field. However, in situ characterization of maize lodging resistance still remains poor. The aim of this study was to develop an indicator, named cumulative lodging index (CLI), based on lodging percentages at different wind speeds for evaluating lodging resistance for different maize cultivars, and to evaluate the accuracy and reliability of this method. RESULTS: Different cultivars showed different patterns of lodging percentage along with wind speeds. The failure wind speed (FWS) for maize ranged between 16 and 30 m s-1 across cultivars. The CLI differed between maize cultivars and showed favorable reliability (i.e. nRMSE of 5.38%). Mechanical properties of the third internode did not vary significantly between cultivars. Significant differences in the reduction index (RI) of wind speed sheltered by maize canopy were found between cultivars. CONCLUSION: Our findings implied that mobile wind machine is powerful in reproducing wind disaster that induce crop lodging. The newly-built CLI was demonstrated to be a more robust indicator than mechanical properties, FWS, and RI when evaluating lodging resistance in terms of both reliability and resolution. This study offers a new perspective for evaluating in situ lodging resistance of crops, and provides technical support for accurate identification of lodging-resistant phenotypic traits.

2.
Front Plant Sci ; 10: 248, 2019.
Article in English | MEDLINE | ID: mdl-30899271

ABSTRACT

Accurate and high-throughput determination of plant morphological traits is essential for phenotyping studies. Nowadays, there are many approaches to acquire high-quality three-dimensional (3D) point clouds of plants. However, it is difficult to estimate phenotyping parameters accurately of the whole growth stages of maize plants using these 3D point clouds. In this paper, an accurate skeleton extraction approach was proposed to bridge the gap between 3D point cloud and phenotyping traits estimation of maize plants. The algorithm first uses point cloud clustering and color difference denoising to reduce the noise of the input point clouds. Next, the Laplacian contraction algorithm is applied to shrink the points. Then the key points representing the skeleton of the plant are selected through adaptive sampling, and neighboring points are connected to form a plant skeleton composed of semantic organs. Finally, deviation skeleton points to the input point cloud are calibrated by building a step forward local coordinate along the tangent direction of the original points. The proposed approach successfully generates accurately extracted skeleton from 3D point cloud and helps to estimate phenotyping parameters with high precision of maize plants. Experimental verification of the skeleton extraction process, tested using three cultivars and different growth stages maize, demonstrates that the extracted matches the input point cloud well. Compared with 3D digitizing data-derived morphological parameters, the NRMSE of leaf length, leaf inclination angle, leaf top length, leaf azimuthal angle, leaf growth height, and plant height, estimated using the extracted plant skeleton, are 5.27, 8.37, 5.12, 4.42, 1.53, and 0.83%, respectively, which could meet the needs of phenotyping analysis. The time required to process a single maize plant is below 100 s. The proposed approach may play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction, functional structural maize modeling, and dynamic growth animation.

3.
J Hum Kinet ; 28: 133-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-23486681

ABSTRACT

A method of hyper-sphere cover in multidimensional space for human Mocap (Motion Capture) data retrieval is presented in this paper. After normalization and feature extraction, both the retrieval instance and the motion data are mapping into a multidimensional space. Several hyper-spheres are constructed according to the retrieval instance, and the domain covered by these hyper-spheres can be considered as the distribution range of a same kind of motions. By use of CMU free motion database, the retrieval algorithm has been implemented and examined and the experimental results are illustrated. At the same time, the main contributions and limitations are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...