Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2402373, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109957

ABSTRACT

Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported. A magnet-screw mechanism in a fluidic channel to function as a piston pump, alongside a flexible magnetic valve designed to open and close the fluidic channel, is proposed. The mechanisms are showcased by storing and releasing of liquid up to 52 µL in a dental implant. The liquid cargos are delivered directly to the implant-bone interface, a region traditionally difficult to access. On-demand liquid delivery is further showed by a metal implant inside both dental phantoms and porcine jawbones. The mechanisms are promising for controllable liquid release after implant placement with minimal invasion, paving the way for implantable devices that enable long-term and targeted delivery of therapeutic agents in various bioengineering applications.

2.
Sci Adv ; 10(35): eadp2758, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39196937

ABSTRACT

Sampling liquids in small and confined spaces to retrieve chemicals and microbiomes could enable minimally invasive monitoring human physiological conditions for understanding disease development and allowing early screening. However, existing tools are either invasive or too large for sampling liquids in tortuous and narrow spaces. Here we report a fundamental liquid sampling mechanism that enables millimeter-scale soft capsules for sampling liquids in confined spaces. The miniature capsule is enabled by flexible magnetic valves and superabsorbent polymer, fully wirelessly controlled for on-demand fluid sampling. A group of miniature capsules could navigate in fluid-filled and confined spaces safely using a rolling locomotion. The integration of on-demand triggering, sampling, and sealing mechanism and the agile group locomotion allows us to demonstrate precise control of the soft capsules, navigating and sampling body fluids in a phantom and animal organ ex vivo, guided by ultrasound and x-ray medical imaging. The proposed mechanism and wirelessly controlled devices spur the next-generation technologies for minimally invasive disease diagnosis.


Subject(s)
Capsules , Animals , Capsules/chemistry , Humans , Wireless Technology , Phantoms, Imaging , Polymers/chemistry , Body Fluids/chemistry
3.
IEEE Robot Autom Lett ; 8(9): 5720-5726, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37744315

ABSTRACT

Wirelessly actuated miniature soft robots actuated by magnetic fields that can overcome gravity by climbing soft and wet tissues are promising for accessing challenging enclosed and confined spaces with minimal invasion for targeted medical operation. However, existing designs lack the directional steerability to traverse complex terrains and perform agile medical operations. Here we propose a rod-shaped millimeter-size climbing robot that can be omnidirectionally steered with a steering angle up to 360 degrees during climbing beyond existing soft miniature robots. The design innovation includes the rod-shaped robot body, its special magnetization profile, and the spherical robot footpads, allowing directional bending of the body under external magnetic fields and out-of-plane motion of the body for delivery of medical patches. With further integrated bio-adhesives and microstructures on the footpads, we experimentally demonstrated inverted climbing of the robot on porcine gastrointestinal (GI) tract tissues and deployment of a medical patch for targeted drug delivery.

4.
J Environ Manage ; 344: 118670, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37517116

ABSTRACT

To promote the intelligent and accurate management of river basins, especially large basins which involve many catchments, it is highly required to develop a useful platform to effectively coordinate arithmetic resources and data, and simultaneously help to make decisions based on the real-time calculation. In this study, a multi-centre cloud platform architecture called 3L4C was constructed, which includes a Cloud-edge-terminal Layer (3L), data centre, model centre, control centre, and customer-service centre (4C). Data fusion technology and an air-land-water coupled model were constructed. Based on HTML5, JavaScript, and Java, an integrated water environment management platform was created and applied to the Three Gorges Reservoir Basin, China. The platform was tested and successfully used for automatic water quality prediction, water environment pollution analysis and control, early warning of abnormal water quality, and emergency water pollution incident evaluation. This platform quickly and accurately forecasts and perfectly displays past, present and future state of the water environment, and offers beneficial support for management decisions in various water environment departments.


Subject(s)
Cloud Computing , Conservation of Natural Resources , Water Quality , Water Pollution/analysis , Rivers , China
5.
Int Symp Med Robot ; 20222022 Apr.
Article in English | MEDLINE | ID: mdl-36129421

ABSTRACT

High precision is required for ophthalmic robotic systems. This paper presents the kinematic calibration for the delta robot which is part of the next generation of Steady-Hand Eye Robot (SHER). A linear error model is derived based on geometric error parameters. Two experiments with different ranges of workspace are conducted with laser sensors measuring displacement. The error parameters are identified and applied in the kinematics to compensate for modeling error. To achieve better accuracy, Bernstein polynomials are adopted to fit the error residuals after compensation. After the kinematic calibration process, the error residuals of the delta robot are reduced to satisfy the clinical requirements.

SELECTION OF CITATIONS
SEARCH DETAIL