Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2022: 1709360, 2022.
Article in English | MEDLINE | ID: mdl-35846430

ABSTRACT

Vascular cognitive impairment (VCI) has emerged as the second major disease responsible for dementia, and there is still a lack of effective treatment methods for this disorder to date. Clinical medications have found that Yisui Fuyongtang (YSFYT) Decoction is effective in improving neurological signs and learning-memory functions in patients who develop white matter lesions and whole brain atrophy. To clarify the effect and molecular regulation mechanism of YSFYT Decoction on model rats, this research analyzed the influence of YSFYT Decoction on the learning-memory ability and lipid metabolism of rats based on behavioral and biochemical analysis. Further pathology and protein detection methods were adopted to investigate the action of YSFYT Decoction on the neurons in the hippocampus of model rats and the regulation of the brain derived neurotrophic factor (BDNF)-tyrosine protein kinase receptor B (TrkB) signaling pathway. Compared with the VCI group, after YSFYT Decoction administration, the ratio of swimming time in the platform, number of crossing the platform, number of active avoidance, and proportion of active avoidance of the rats were markedly increased, whereas the response latency was substantially reduced (p < 0.05). Biochemical tests indicated that contents of lipoprotein lipase (LPL), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) of the model rats in YSFYT Decoction treatment group were greatly reduced, whereas those of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), catalase (CAT), malondialdehyde (MDA), and superoxide dismutase (SOD) were elevated (p < 0.05). Additionally, Bcl-2 expression in YSFYT Decoction treatment group was significantly increased, but neuron apoptosis of the hippocampus tissue was reduced. Meanwhile, neuron number was apparently higher than that in VCI model group. Following Yisui Decoction treatment, expressions of growth-associated protein 43 (GAP43), synaptophysin (SYP), postsynaptic density 95 (PSD95), NMDAR subunit 2B (NR2B), BDNF, TrkB, phospho-mitogen-activated protein kinase (p-MAPK), extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and phospho-protein kinase B (p-AKT) were markedly elevated. Taken together, YSFYT Decoction could activate the BDNF-TrkB signaling pathway, elevate Bcl-2 expression, and minimize neuronal apoptosis in hippocampus, thereby improving the behavioral characteristics and biochemical indicators of the VCI rat model.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cholesterol/metabolism , Cognition , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus , Neuronal Plasticity/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats
2.
Article in English | MEDLINE | ID: mdl-35754679

ABSTRACT

This study clarified the regulatory effect of Yisui multipurpose Soup towards D-galactose-induced cognitive impairment cell model on the molecular level. We first constructed and cultured the cell model of cognitive impairment induced by D-galactose in neurons in vitro and then cultured the cells in the medium supplemented with different doses of drug-containing serum of Yisui multipurpose soup. Expressions of inflammatory cytokine tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), nitric oxide (NO), and interleukin-1ß (IL-1ß) were assessed by the ELISA and western blot, and cell apoptosis was determined by flow cytometry and TUNEL. The expression changes of apoptosis-related proteins Bcl-2 and Bax were estimated by immunofluorescence, qPCR, and western blot. Finally, we analyzed and made the network interaction diagram of Yisui multipurpose soup-components-targets through the network pharmacology method, from which we could learn that there were 1104 gene targets related to vascular cognitive impairment (VCI) and 1071 component targets of Yisui multipurpose soup. And there were 251 overlapping genes, mainly gathering in protein binding, protein modification, MAPK signaling pathway, and calcium signaling pathway. The expressions of TNF-α, iNOS, NO, and IL-1ß were significantly decreased after the culture medium was replaced by medium containing drug serum. We also found that the effect of high-dose drug-containing serum on the expression of inflammatory factors was better than that of low dose. The Yisui multipurpose soup drug serum in the medium not only significantly increased Bcl-2 expression and effectively reduced Bax expression, but also inhibited the apoptosis of neurons induced by D-galactose. In conclusion, Yisui multipurpose soup could effectively protect D-galactose-induced neuronal cell cognitive impairment by orchestrating expressions of the inflammatory factors TNF-α, iNOS, NO, and IL-1ß and the apoptosis-related proteins Bcl-2 and Bax.

SELECTION OF CITATIONS
SEARCH DETAIL
...