Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(19): e2301170, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37085919

ABSTRACT

Electromagnetic (EM) metamaterial is a composite material with EM stealth properties, which is constructed by artificially reverse engineering metal split resonance rings (SRR). However, the greatest limitation of EM metamaterials is that they can only stealth at a fixed and lower frequency of EM waves, and modern processing techniques still cannot meet the accuracy requirements to fabric nano-size structural unit. Nano-sized and even ultra-small SRR at molecular level are promising arrays to realize the ability of EM stealth function at a higher frequency, although it has proven challenging to synthesize long, straight, connected molecular SRR, and also difficult to arrange those molecular SRR into a strict array. Here, the study overcomes this challenge and demonstrates that the fabric of polypyrrole molecular SRR achieves an ultra-small inner diameter of 2.49 Å and realizes the arrays arrangement at molecular level. Furthermore, the study exploits the EM stealth function and verifies that such arrays of molecular SRR with 2.49 Å have the ability to reach high-performance EM stealth in the range of 106 -1016 Hz. This design concept opens a pathway for developing new metamaterials with broadband EM wave stealth and also serves the wider range of new applications.

2.
J Colloid Interface Sci ; 636: 378-387, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36638576

ABSTRACT

In this study, zeolitic imidazolate framework (ZIF-8)/polyvinylidene fluoride (PVDF) loose nanofiltration (NF) hollow fiber membranes were fabricated by constructing ZIF-8 functional layer on the PVDF supporting membranes based on the vacuum-assisted assembly process. The ZIF-8 synthesis was completed in a water system, and the synthesized ZIF-8 suspension was directly added to polyvinyl alcohol (PVA) and halloysite nanotubes (HNTs) aqueous solution system without drying to prepare the casting solution, which could solve the agglomeration and poor dispersion problem of ZIF-8 particles. In addition, the embedded HNTs and the loaded PVA among the ZIF-8 layer could improve the bonding strength between the ZIF-8 layer and the supporting membranes. After constructing ZIF-8 functional layer, the pore size of supporting membranes decreased from more than 300 nm to several nanometers. Furthermore, the water contact angle reduced from 91.1° to 54.2°. Applied to treat dye wastewater, the prepared ZIF-8/PVDF membranes maintained high dye rejection (˃99.0 %) for Congo red (CR), but low salt rejection for NaCl (about 2 %). In addition, the flux could reach 21.6 L m-2h-1 after continuous filtration 360 min, exhibiting a potential for treating the dye/salt wastewater. In particular, there were no organic solvents used in the work, which provided a promising idea for solvent-free fabrication of loose NF membranes.

3.
ACS Omega ; 7(34): 30333-30346, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36061731

ABSTRACT

Hydrophobic and breathable nanofiber membranes have attracted considerable attention owing to their applications in various fields. In this study, we fabricated superhydrophobic and breathable nanofiber membranes using solution blow spinning. We optimized the spinning process parameters by analyzing their effects on the structure and properties of the nanofiber membranes. And the nanofiber membranes achieved superhydrophobicity through hydrophobic modification treatment. The average fiber diameter and pore size of the obtained membrane were 0.51 and 13.65 µm, respectively. The membranes exhibited superhydrophobicity, breathability, and mechanical properties: water vapor transmission of 12.88 kg/m2/day, air permeability of 10.97 mm/s, water contact angle of 150.92°, maximum tensile stress of 5.36 MPa, and maximum elongation at break of 12.27%. Additionally, we studied the impact of heat treatment on the nanofiber membranes. The membranes prepared in this study can be applied to protective garments, outdoor clothing, antifouling materials, etc. Because of its relatively higher production efficiency, solution blow spinning is a prospective method for producing functional nanofibers.

4.
Polymers (Basel) ; 14(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36145947

ABSTRACT

Perfluoropolymer membranes are widely used because of their good environmental adaptability. Herein, the ultrafine fibrous FEP porous membranes were fabricated with electrospinning-sintered technology. The effects of PVA content and sintering temperature on the fabricated membranes' morphologies and properties were investigated. The results indicate that a kind of dimensionally stable network structure was formed in the obtained ultrafine fibrous FEP porous membranes after sintering the nascent ultrafine fibrous FEP/PVA membranes. The optimal sintering conditions were obtained by comparing the membranes' performance in terms of membrane morphology, hydrophobicity, mechanical strength, and porosity. When the sintering temperature was 300 °C for 10 min, the porosity, water contact angle, and liquid entry pressure of the membrane were 62.7%, 124.2° ± 2.1°, and 0.18 MPa, respectively. Moreover, the ultrafine fibrous FEP porous membrane at the optimal sintering conditions was tested in vacuum membrane distillation with a permeate flux of 15.1 L·m-2·h-1 and a salt rejection of 97.99%. Consequently, the ultrafine fibrous FEP porous membrane might be applied in the seawater desalination field.

5.
ACS Omega ; 7(25): 21454-21464, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35785275

ABSTRACT

Graphene (GE) is an emerging type of two-dimensional functional nanoparticle with a tunable passageway for oil molecules. Herein, polyvinylidene fluoride (PVDF)/GE composite membranes with controllable pore structure were fabricated with a simple non-solvent-induced phase separation method. The change of crystallinity and crystal structure (α, ß, γ, etc.) generated is due to the addition of GE, which benefits the design of a suitable pore structure for oil channels. Meanwhile, the hydrophobicity and thermal stability of the composite membrane were obviously enhanced. With 3 wt % GE, the contact angle was 124.6°, which was increased greatly compared to that of the GE-0 sample. Moreover, the rate of the phase transition process was affected by the concentration of casting solution, temperature, and composition of the coagulation bath. For example, the composite membrane showed better oil-water separation properties when the coagulation bath was dioctyl phthalate. In particular, the oil flux and separation efficiencies were up to 2484.08 L/m2·h and 99.24%, respectively. Consequently, PVDF/GE composite membranes with excellent lipophilicity may have good prospects for oily wastewater treatment.

6.
Nanoscale ; 13(28): 12342-12355, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34254632

ABSTRACT

Despite recent efforts, there are still significant challenges in preparing hyper-hydrophobic membranes using environmental-friendly materials and simple methods. In this work, using phase separation theory, we prepared a fluorine-free hyper-hydrophobic porous hollow composite membrane using one-step ultrasound dip-coating. Then, fluorine-free modified titanium dioxide, polydimethylsilane and polypropylene was used to construct the porous membrane with a water contact angle of 161°. The distribution of surface elements, morphology, wetting and the scale of titanium on the membranes was characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), the water contact angle and acid-alkali stability, wetting resistance, and so on. The membrane was evaluated for desalination in the presence of organic-pollutants. Under longer-term vacuum membrane distillation, compared with the general polypropylene membrane, the flux of the hyper-hydrophobic membrane increased to 12.17 kg (m2 h)-1, and the rejection rate reached 99.99%. These results indicated that the free-fluorine hyper-hydrophobic membrane could be used for seawater desalination. Finally, our results indicate that the hyper-hydrophobic modified membrane has good potential for use in industrial desalination.

7.
Sci Total Environ ; 754: 141848, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32898778

ABSTRACT

In this work, polyvinylidene fluoride (PVDF) loose nanofiltration (NF) hollow fiber membranes with multilayer structure were prepared successfully based on a solvent-free process. Graphene oxide (GO) was used to cover the interface pores of the pristine PVDF membranes via vacuum filtration, and polypyrrole (PPy) was polymerized on the surface to further decorate the membrane structure. Interestingly, the modified membranes exhibited a multilayer structure due to synergistic effect of GO and PPy. The structure and property of PVDF loose NF membranes were investigated in detail. After modifying by GO and PPy, the hydrophilicity improved obviously. Moreover, the molecular weight cut off (MWCO) was about 3580 Da, and the smallest pore size of skin layer decreased to 2.5-4 nm. Furthermore, the PVDF loose NF hollow fiber membranes presented a high dye rejection (˃98.5%) for negative dyes, whereas a low salt rejection for NaCl (about 4%), showing a great potential for separating dye/salt accurately. Specifically, there were not any solvent used in all the preparation processes. The work offered a novel strategy for green preparation of loose NF membranes.

8.
RSC Adv ; 11(36): 22287-22296, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-35480820

ABSTRACT

A novel tubular poly(m-phenylene isophthalamide) (PMIA) nanofiber membrane decorated with Ag nanoparticles was fabricated via a simple method in this study. First, Ag@RGO nanocomposites were prepared via a mussel-inspired method. Then, a tubular PMIA/Ag@RGO nanocomposite nanofiber membrane (T-PMIA/Ag@RGO NNM) was prepared by adding Ag@RGO nanocomposites to the electrospining solution. In particular, hollow braided rope was used as the collector and reinforcement during the electrospinning process. T-PMIA/Ag@RGO NNM exhibits an excellent catalytic efficiency as most of the Ag nanoparticles were exposed to the surface of the nanofiber and because of the fast mass transfer in continuous catalysis process. T-PMIA/Ag@RGO NNM can be easily recycled from the reaction solution and exhibits good reusability. The degradation rate for 4-NP could still remain 98.7% after ten consecutive cycles. The results might advance the real applications of the nanofiber membrane in the continuous catalysis process.

9.
J Hazard Mater ; 398: 122823, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32512436

ABSTRACT

In this work, the poly(vinylidene fluoride) (PVDF) hollow fiber membranes with switchable pore size were fabricated by melt-spinning and stretching (MS-S) process based on a completely green and sustainable route. The membrane preparation process and pore formation mechanism were discussed and investigated in detail. Meanwhile, the effect of stretching ratio on the membrane structure and property was studied based on scanning electron microscopy (SEM), pore size distribution, N2 flux, pure water flux, mechanical property and so on. The prepared membranes with different stretching ratios exhibited excellent tensile strength in the range from 23.0 to 62.6 MPa. The mean pore size of the prepared membranes with stretching 100 % (M-100) was about 0.317 µm, which showed a high dye rejection (<93.9 %) for Direct Black 19. Specifically, there were not any organic solvent and low-molecular-weight diluent used during the preparation process. The recycled PEO and water were obtained after treating the wastewater by membrane filtration. In addition, the recycled PEO could be reused as pore forming agent, which could achieve completely green and sustainable membrane preparation process.

10.
Environ Sci Pollut Res Int ; 27(22): 28209-28221, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32415450

ABSTRACT

Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes (AOPs) have created a promising prospect for organic wastewater decontamination; thus, it is of important significance to design a kind of special fiber that can be applied in AOPs. In this work, a viable route is proposed to fabricate manganese oxide-supporting melt-spun modified poly (styrene-co-butyl acrylate) fiber, and the prepared fiber has an excellent activity to catalyze H2O2 and O3 to decolorize dye-containing water. The results show that the decolorization of a cationic blue solution can be completely accomplished within 10 min with the prepared fiber as a catalyst, and its decolorization efficiency can reach up to 96.2% within 40 min. The concentration of total organic carbon can decrease from 20.3 to 12.3 mg/L. The prepared fiber can be reused five times without any loss in decolorization efficiency. Compared with other manganese oxide-based catalysts reported in the literature, the prepared fiber also shows many advantages in decolorizing methylene blue such as easy separation, mild reaction condition, and high decolorization efficiency. Therefore, we are confident that the fiber introduced in this study will exhibit a great application potential in the field of dye wastewater treatment.


Subject(s)
Coloring Agents , Water Decolorization , Acrylates , Hydrogen Peroxide , Manganese Compounds , Oxides , Styrene
11.
J Colloid Interface Sci ; 557: 94-102, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31514097

ABSTRACT

A recyclable polypyrrole (PPy)/cadmium sulfide (CdS) hollow fiber photocatalyst was innovatively fabricated for solving the loss issue of the current powder-form photocatalyst in slurry system. Core-sheath structure CdS/polyacrylonitrile (PAN) fiber was prepared via successive ionic layer adsorption and reaction (SILAR) method on the surface of PAN fiber. PPy was further deposited on the CdS/PAN fiber by vapor deposition polymerization. After the removal of interior PAN template, PPy/CdS hollow fiber was yielded. The hollow structure of PPy/CdS hollow fiber was confirmed by morphology observation. The resulting PPy/CdS hollow fiber presents low energy band gaps of 1.9 eV, which accounts for enhanced visible light photocatalytic activity after PPy deposition. PPy/CdS hollow fiber shows good dye removal efficiency of 73.06 wt% (dosage of the product as low as 5 mg·10 mL-1), and praiseworthy H2 production rate up to 269.7 µmol·g-1·h-1. PPy/CdS hollow fiber maintained high and sustainable photocatalytic activity compared to CdS/PAN fiber after 8 cycles, indicating that PPy effectively improved the stability of CdS. Here, PPy plays key synergistic role in photocatalysis of PPy/CdS hollow fiber for the promotive and protective effects based on the actual photocatalytic performance and inductively coupled plasma optical emission spectrometer (ICP-OES) results. Compared with nano-sized photocatalysts, the fiber-formed PPy/CdS hollow fiber is highly bulky and easy to recycle. PPy/CdS hollow fiber has great potential for scale-up in industrial application because of its excellent grabbing ability and degradation to contaminants, and ease of disposal.

12.
ACS Omega ; 4(4): 7237-7245, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459827

ABSTRACT

Graphene (GE) has attracted significant attention on account of its unique structure and superior performance, arousing a new research field for materials science. Herein, a novel GE-coated poly(ethylene terephthalate) nonwoven (PGNW) hollow tube (PGNW-T) was fabricated for continuous and highly effective oil collection from the water surface. The PGNW was prepared via a dip-spray coating method, which possessed superhydrophobicity-superoleophilicity and could absorb a variety of oils or organic solvents with the absorption capacity (Q) value of 18-34 times its own weight. Then, PGNW-T was obtained through winding the PGNW on the surface of a porous polypropylene hollow tube. As-prepared PGNW-T was competent for dynamic oil collection with high flux (18 799.94 L/m2 h), outstanding separation efficiency (97.14%), and excellent recyclability (>96% after 10 cycles) from the oil/water mixture. In particular, a miniature device based on as-prepared PGNW-T was developed for continuous thin oil film collection, which could dynamically "catch up" floated oils or organic solvents from the water surface. Finally, our strategy is extremely facile to scale up, showing its huge potential application in practical oil-spill remediation.

13.
J Nanosci Nanotechnol ; 19(9): 5994-5998, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30961772

ABSTRACT

Polyvinylidene fluoride (PVDF) flat membrane was prepared by thermally induced phase separation (TIPS) method using a mixture of dimethyl phthalate (DMP) and dioctyl phthalate (DOP) as a diluent. The PVDF/DMP/DOP system phase separation was test by DSC, cross section structure of membrane was observed by SEM. The effect of polymer concentrations, cooling rate and coagulation bath temperature on the cross section structure of membrane and surface micro-structure were studied. Results showed that membrane pore size porosity and water flux decreased with the increase in polymer concentration. The membrane section by the dendritic structure transition of nodular structure eventually turned into a compact structure. Pore size and water flux increased with the increase in coagulation bath temperature. The spherulite structures of the cross section of the membrane reduced while the lacy structure increased cross section smoothing.

14.
RSC Adv ; 9(12): 6699-6707, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518482

ABSTRACT

In this work, polyvinyl chloride (PVC) hollow fiber membranes were prepared via a melt-spinning method and on-line stretching treatment. Gamma-butyrolactone (GBL) and epoxidized soybean oil (ESO) were selected as the solvent and the thermal stabilizer, respectively. The effects of on-line stretching treatment on the membrane structure and performance were characterized by means of morphology, surface roughness, pore size distribution, permeation performance and so on. The morphology showed that the prepared PVC hollow fiber membrane belonged to a homogeneous membrane. The on-line stretching treatment decreased the roughness of the inner surface and the outer surface, but it increased the water contact angle, mean pore size, porosity and pure water flux. Meanwhile, the pore size distribution range remained stable and narrow. The rejection of Direct Black 19 particles was higher than 90% when it approached a steady value. This type of membrane filtration was a deep intercept. Furthermore, the tensile strength increased with the increment of stretching ratio, and the elongation at break showed the opposite trend. The biggest tensile strength could be obtained as the stretching ratio reached 3.0 and was 23.89 MPa.

15.
RSC Adv ; 9(58): 33722-33732, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-35528880

ABSTRACT

A simple, tubular structure polyurethane/graphene (PU/GE) nanofiber membrane for continuous oil/water separation was prepared using the following strategies: a polyester (PET) fiber braided tube was used for reinforcement, stearic acid (SA) was used to assist GE dispersion, and a PU solution containing GE was used to cover the outer layer of the PET fiber braided tube using the electrospinning method. Specifically, the PU/GE nanofiber membrane has a multi-branched structure. The tubular braid reinforced (TBR) PU/GE nanofiber membrane was characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), confocal scanning microscopy (CSM) and capillary flow porometry. The contact angle results showed that the TBR PU/GE nanofiber membrane had good hydrophobic and lipophilic properties. The obtained membranes had good oil/water selectivity for oil-water separation (with a separation efficiency up to 99%). In addition, the optimized membrane can be effectively employed to separate a surfactant-stabilized water-in-oil emulsion with a separation efficiency up to 90% and a high permeate flux (137.5 L m-2 h-1). Our TBR PU/GE nanofiber membrane is therefore a desirable material for the highly efficient separation of water-in-oil emulsions, and shows broad application prospects in the field of oil/water separation.

16.
J Colloid Interface Sci ; 534: 480-489, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30248617

ABSTRACT

A nagging problem for the decompostion of photocatalyst organic carrier can be expected to be resolved by shielding effect from our yolk-porous shell nanospheres. The nanospheres were synthesized by a facile strategy: polyporrole (PPy) and silver were deposited together on TiO2 by chemical oxidative polymerization; then PPy/Ag-coated TiO2 nanoparticles were encapsulated in silicon dioxide (SiO2) shell with polyethylene glycol (PEG) as a pore-forming agent via sol-gel method based on hydrolysis of tetraethyl orthosilicate (TEOS). After removing intermediary PPy between yolk and shell by calcination and washing off PEG in shell, yolk-porous shell (SiO2@void@Ag/TiO2) nanospheres were formed. The voids in SiO2@void@Ag/TiO2 can serve as photocatalytic reactors. The channels in porous shell at outer layer provide passages for light transmission, dye molecule accessing and degradants out. More importantly, the euphotic and porous shell exhibited an impressive protection to organic carrier, lest unfavorable decomposition occurred. Yolk-porous shell nanospheres showed commendable performance with >99.5% of dye removal efficiency under 3 h visible light irradiation, higher than pristine TiO2 and Ag/TiO2 nanoparticles, due to the synergy effect of robust adsorption capacity and photocatalysis. Our work could provide a good strategy for developing novel carrier-based photocatalysts for environmental remediation application, which can be readily extended to the combination of other nanophotocatalysts and organic carriers for enhancing sustainable photocatalytic performance.

17.
Nanoscale ; 10(42): 19835-19845, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30334561

ABSTRACT

A novel tubular braid reinforced (TBR) PMIA/CA-PEI/Ag nanofiber membrane for application in dynamic catalysis was introduced in this study. The preparation method of the TBR PMIA/CA-PEI/Ag nanofiber membrane was facile and efficient. The TBR PMIA/CA-PEI/Ag nanofiber membrane was characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The mechanical properties were evaluated by a universal material testing machine. The tensile strength of TBR nanofiber membrane exceeded 500 MPa, whereas that of the nanofiber membrane without reinforcement was merely 10 MPa. Besides, the compressive strength of the TBR nanofiber membrane was also reinforced, which indicated that the TBR nanofiber membrane could withstand a higher operating pressure. The reduction of 4-NP to 4-AP was selected as the model reaction to evaluate the catalytic property of TBR PMIA/CA-PEI/Ag nanofiber membrane. The apparent rate constant of dynamic catalysis was 34.58 times higher than that of static catalysis. After 10 cycles, the conversion of 4-NP was still higher than 95.3%. This indicated that the TBR PMIA/CA-PEI/Ag nanofiber membrane had superior stability and recyclability. Besides, the TBR PMIA/CA-PEI/Ag nanofiber membrane also showed superior catalytic performance when it was used for catalyzing other environmental pollutants.

18.
Chemosphere ; 206: 238-247, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29753286

ABSTRACT

Coagulation-sedimentation combined with sponge iron/ozone (CS-SFe/O3) technology was applied to pretreat water-based seed coating wastewater (WSCW) from pesticide manufacturing. Coagulation with polyferric sulfate at a dosage of 1.5 g L-1 and a pH of 8.0 was effective, with color and chemical oxygen demand (COD) removal rates of 96.8 and 83.4%, respectively. SFe/O3 treatment further reduced the organic content in the effluents, especially concerning the degradation of aromatic pollutants, as demonstrated via ultraviolet-visible spectrophotometry (UV-vis), excitation-emission matrix (EEM) fluorescence spectrometry, and gas chromatography-mass spectrometry (GC/MS) analyses. The residual color and COD values of the effluent were 581.0 times and 640.0 mg L-1, respectively, under optimal conditions (ozone concentration of 0.48 mg L-1, SFe dosage of 20.0 g L-1, initial pH of 9.0, and reaction time of 30 min). Organic pollutants were also degraded by the high amounts of HO, which may have been generated via the transformation of ozone into HO on the SFe's surface and in the solution. Meanwhile, the biochemical oxygen demand (BOD5)/COD ratio of the WSCW increased, which indicates that the biodegradability improved significantly. The amount of iron leached from SFe particles was 4.5 mg L-1, which shows that the SFe catalyst has good stability. The operating cost of the combined CS-SFe/O3 technology was estimated at approximately 2.79 USD t-1. The results of this study suggest that the application of the combined CS-SFe/O3 technology in WSCW pretreatment can be beneficial for removing suspended solids, degrading recalcitrant pollutants, and enhancing biodegradability for the subsequent bioprocessing treatment.


Subject(s)
Iron/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Iron/analysis , Water Pollutants, Chemical/analysis
19.
ACS Appl Mater Interfaces ; 10(25): 21672-21680, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29812896

ABSTRACT

In this study, superlight adsorbent sponges (bulk density 0.016-0.049 g·cm-3) were developed based on graphene oxide (GO) cross-linked with poly(vinyl alcohol) (PVA). The interlayer spacing of the GO nanosheets was increased by the insertion of PVA, and good mechanical integrity was attained by the cross-linked structure. They showed excellent continuous flow adsorption capacity (CFAC) when methylene blue (MB) was used as a model contaminant; a water flux of 396 L·m-2·h-1 through a 2 cm thick adsorbent sponge was achieved at a hydraulic head of only 10 cm water, with an almost complete retention of MB. They corresponded to a water permeability of 4.0 × 105 L·m-2·h-1·MPa-1, which was several orders of magnitudes higher than GO-based membranes for similar applications reported in the literature. The GO nanosheets were completely immobilized in the sponge by cross-linking with PVA, and thus, there was no GO nanoparticle leaching or flushing out into the treated permeate water, which was another advantage over direct use of GO powders in water treatment. Because of the high water permeability and CFAC, the cross-linked GO/PVA sponges have a great potential for wastewater treatment.

20.
Materials (Basel) ; 11(3)2018 Mar 18.
Article in English | MEDLINE | ID: mdl-29562643

ABSTRACT

Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) porous membranes are fabricated via thermally induced phase separation (TIPS) with mixed diluent (dibutyl phthalate (DBP)/dioctyl phthalate (DOP)). The effects of mixed diluent are discussed in detail in term of morphology, mean pore size, selective wettability, etc. The results show that the membrane structure changes from spherulitic to bicontinuous with the change of DBP/DOP ratio. It is also found that the degree of crystallization decreases with the decrease of DBP/DOP ratio in mixed diluent. When liquid-liquid (L-L) phase separation precedes solid-liquid (S-L) phase separation, the obtained membranes have outstanding hydrophobicity and lipophilicity, excellent mechanical property. Additionally, the PVDF-HFP hybrid membranes are prepared with silica (SiO2) particles and the effect of SiO2 content on structure and properties is discussed. It is found that the PVDF-HFP hybrid membrane with 2 wt % SiO2 (M3-S2) has better properties and higher filtration rate and separation efficiency for surfactant-stabilized water-in-oil emulsion separation. Moreover, the membrane M3-S2 also exhibits excellent antifouling performance for long-running.

SELECTION OF CITATIONS
SEARCH DETAIL
...