Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(11): 7723-7733, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38451833

ABSTRACT

Gallium phosphide is an established photoelectrode material for H2 or O2 evolution from water, but particle-based GaP photocatalysts for H2 evolution are very rare. To understand the reasons, we investigated the photocatalytic H2 evolution reaction (HER) of suspended n-type GaP particles with iodide, sulfite, ferricyanide, ferrous ion, and hydrosulfide as sacrificial electron donors, and using Pt, RhyCr2-yO3, and Ni2P HER cocatalysts. A record apparent quantum efficiency of 14.8% at 525 nm was achieved after removing gallium and oxide charge trapping states from the GaP surface, adding a Ni2P cocatalyst to reduce the proton reduction overpotential, lowering the Schottky-barrier at the GaP-cocatalyst interface, adjusting the polarity of the depletion layer at the GaP-liquid interface, and optimizing the electrochemical potential of the electron donor. The work not only showcases the main factors that control charge separation in suspended photocatalysts, but it also explains why most known HER photocatalysts in the literature are based on n-type and not p-type semiconductors.

2.
J Am Chem Soc ; 145(11): 6526-6534, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892623

ABSTRACT

Particulate photocatalysts for the overall water splitting (OWS) reaction offer promise as devices for hydrogen fuel generation. Even though such photocatalysts have been studied for nearly 5 decades, much of the understanding of their function is derived from observations of catalyst ensembles and macroscopic photoelectrodes. This is because the sub-micrometer size of most OWS photocatalysts makes spatially resolved measurements of their local reactivity very difficult. Here, we employ photo-scanning electrochemical microscopy (photo-SECM) to quantitatively measure hydrogen and oxygen evolution at individual OWS photocatalyst particles for the first time. Micrometer-sized Al-doped SrTiO3/Rh2-yCryO3 photocatalyst particles were immobilized on a glass substrate and interrogated with a chemically modified SECM nanotip. The tip simultaneously served as a light guide to illuminate the photocatalyst and as an electrochemical nanoprobe to observe oxygen and hydrogen fluxes from the OWS. Local O2 and H2 fluxes obtained from chopped light experiments and photo-SECM approach curves using a COMSOL Multiphysics finite-element model confirmed stoichiometric H2/O2 evolution of 9.3/4.6 µmol cm-2 h-1 with no observable lag during chopped illumination cycles. Additionally, photoelectrochemical experiments on a single microcrystal attached to a nanoelectrode tip revealed a strong light intensity dependence of the OWS reaction. These results provide the first confirmation of OWS at single micrometer-sized photocatalyst particles. The developed experimental approach is an important step toward assessing the activity of photocatalyst particles at the nanometer scale.

4.
J Am Chem Soc ; 138(49): 15829-15832, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960305

ABSTRACT

The research field on perovskite solar cells (PSCs) is seeing frequent record breaking in the power conversion efficiency (PCE). However, organic-inorganic hybrid halide perovskites and organic additives in common hole-transport materials (HTMs) exhibit poor stability against moisture and heat. Here we report the successful fabrication of all-inorganic PSCs without any labile or expensive organic components. The entire fabrication process can be operated in ambient environment without humidity control (e.g., a glovebox). Even without encapsulation, the all-inorganic PSCs present no performance degradation in humid air (90-95% relative humidity, 25 °C) for over 3 months (2640 h) and can endure extreme temperatures (100 and -22 °C). Moreover, by elimination of expensive HTMs and noble-metal electrodes, the cost was significantly reduced. The highest PCE of the first-generation all-inorganic PSCs reached 6.7%. This study opens the door for next-generation PSCs with long-term stability under harsh conditions, making practical application of PSCs a real possibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...