Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(6): e202114341, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34806275

ABSTRACT

Adequate hole mobility is the prerequisite for dopant-free polymeric hole-transport materials (HTMs). Constraining the configurational variation of polymer chains to afford a rigid and planar backbone can reduce unfavorable reorganization energy and improve hole mobility. Herein, a noncovalent conformational locking via S-O secondary interaction is exploited in a phenanthrocarbazole (PC) based polymeric HTM, PC6, to fix the molecular geometry and significantly reduce reorganization energy. Systematic studies on structurally explicit repeats to targeted polymers reveals that the broad and planar backbone of PC remarkably enhances π-π stacking of adjacent polymers, facilitating intermolecular charge transfer greatly. The inserted "Lewis soft" oxygen atoms passivate the trap sites efficiently at the perovskite/HTM interface and further suppress interfacial recombination. Consequently, a PSC employing PC6 as a dopant-free HTM offers an excellent power conversion efficiency of 22.2 % and significantly improved longevity, rendering it as one of the best PSCs based on dopant-free HTMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...