Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0074, 2023.
Article in English | MEDLINE | ID: mdl-36930769

ABSTRACT

The power generated by flexible wearable devices (FWDs) is normally insufficient to eradicate bacteria, and many conventional antibacterial strategies are also not suitable for flexible and wearable applications because of the strict mechanical and electrical requirements. Here, polypyrrole (PPy), a conductive polymer with a high mass density, is used to form a nanostructured surface on FWDs for antibacterial purposes. The conductive films with PPy nanorods (PNRs) are found to sterilize 98.2 ± 1.6% of Staphylococcus aureus and 99.6 ± 0.2% of Escherichia coli upon mild electrification (1 V). Bacteria killing stems from membrane stress produced by the PNRs and membrane depolarization caused by electrical neutralization. Additionally, the PNR films exhibit excellent biosafety and electrical stability. The results represent pioneering work in fabricating antibacterial components for FWDs by comprehensively taking into consideration the required conductivity, mechanical properties, and biosafety.

2.
ACS Appl Mater Interfaces ; 12(38): 42850-42858, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32862635

ABSTRACT

The development of earth-abundant transition-metal-based electrocatalysts with bifunctional properties (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is crucial to commercial hydrogen production. In this work, layered double hydroxide (LDH)-zinc oxide (ZnO) heterostructures and oxygen vacancies are constructed synchronously by plasma magnetron sputtering of NiFe-LDH. Using the optimal conditions, ZnO nanoparticles are uniformly distributed on the NiFe-LDH nanoflowers, which are prepared uniformly on the three-dimensional porous Ni foam. In the LDH-ZnO heterostructures and oxygen vacancies, electrons are depleted at the Ni cations on the NiFe-LDH surface and the active sites change from Fe cations to Ni cations during OER. Our theoretical assessment confirms the change of active sites after the deposition of ZnO and reveals the charge-transfer mechanism. Owing to the significant improvement in the OER dynamics, overall water splitting can be achieved at only 1.603 V in 1 M KOH when the Ni/LDH-ZnO and Ni/LDH are used as the anode and cathode, respectively. The work reveals a novel design of self-supported catalytic electrodes for efficient water splitting and also provides insights into the surface modification of catalytic materials.

3.
Small ; 16(25): e2001470, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32463594

ABSTRACT

Plasma functionalization can increase the efficiency of MoSe2 in the hydrogen evolution reaction (HER) by providing multiple species but the interactions between the plasma and catalyst are not well understood. In this work, the effects of the ion energy and plasma density on the catalytic properties of MoSe2 nanosheets are studied. The through-holes resulting from plasma etching and multi-vacancies induced by plasma-induced damage enhance the HER efficiency as exemplified by a small overpotential of 148 mV at 10 mA cm-2 and Tafel slope of 51.6 mV dec-1 after the plasma treatment using a power of 20 W. The interactions between the plasma and catalyst during etching and vacancies generation are evaluated by plasma simulation. Finite element and first-principles density functional theory calculations are also conducted and the results are consistent with the experimental results, indicating that the improved HER catalytic activity stems from the enhanced electric field and more active sites on the catalyst, and reduced bandgap and adsorption energy arising from the etched through-holes and vacancies, respectively. The results convey new fundamental knowledge about the plasma effects and means to enhance the efficiency of catalysts in water splitting as well insights into the design of high-performance HER catalysts.

4.
ACS Appl Mater Interfaces ; 12(2): 2460-2468, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31877010

ABSTRACT

MoSe2 is an efficient catalyst for the hydrogen evolution reaction (HER) and can potentially replace conventional catalysts composed of noble metals such as Pt. The HER activity of MoSe2 originates mainly from the edge sites of Se atoms, but the low concentration of Se exposed to the electrolyte hampers the performance. Hence, activating a larger portion of the basal plane of Se atoms is an effective way to improve the HER properties. Herein, a 3D hierarchic nanoflower structure comprising MoSe2 with atomic-scale interlayered graphene layers in the nanosheets is designed and prepared to improve the electron conductivity and decrease the proportions of inactive basal planes. Raman scattering, transmission electron microscopy, and energy-dispersive X-ray spectroscopy verify effective insertion of graphene layers in MoSe2, and the HER characteristics are improved as exemplified by a small overpotential of 175 mV at 10 mA cm-2, small Tafel slope of 58 mV dec-1, and excellent durability with only small deterioration of 10 mV after 10,000 cycles. First-principles density functional theory and finite element method calculations corroborate the experimental results, revealing better conductivity and hydrogen adsorption/desorption ability rendered by the graphene layers. Our results reveal a new and effective strategy to optimize the structure and composition and reduce the hydrogen adsorption energy barrier in the pursuit of high-efficiency non-noble metal catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...