Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 49(3): 671-707, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31913391

ABSTRACT

Developing eco-friendly high-performance piezoceramics without lead has become one of the most advanced frontiers in interdisciplinary research. Although potassium sodium-niobate {(K,Na)NbO3, KNN} based ceramics are believed to be one of the most promising lead-free candidates, the relatively inferior piezoelectric properties and strong temperature dependency have hindered their development for more than 50 years since being discovered in the 1950s. It was not until 2014 that our group initially proposed a new phase boundary (NPB) that simultaneously improved the piezoelectric properties and temperature stability of non-textured KNN-based ceramics to the level of partly lead-based ceramics. The NPB has been then proved by some researchers and believed to pave the way for "lead-free at last" proposed by E. Cross (Nature, 2004, 432, 24). However, the understanding of the NPB is still in its infancy, leaving many controversies, including the phase structure and physical mechanisms at the NPB as well as the essential difference when compared with other phase boundaries. In this context, we systematically summarized the origin and development of the NPB, focusing on the construction, structure and intrinsic trait of the NPB, the effects of the NPB on the performance, and the validity and related incipient devices of the NPB. Particularly, we concluded the phase structure and domain structure locating at the NPB, analyzed the physical mechanisms in depth, proposed the possible methods to further improve the performance at the NPB, and demonstrated the validity and scope of the NPB as well as the device application. Finally, we gave out our perspective on the challenges and future research of KNN-based ceramics with NPB. Therefore, we believe that this review could promote the understanding of the NPB and guide the future work of KNN-based ceramics.

2.
J Am Chem Soc ; 141(35): 13987-13994, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31397576

ABSTRACT

Owing to growing environmental concerns, the development of lead-free piezoelectrics with comparable performance to the benchmark Pb(Zr,Ti)O3 (PZT) becomes of great urgency. However, a further enhancement of lead-free piezoelectrics based on existing strategies has reached a bottleneck. Here we achieve a slush polar state with multiphase coexistence in lead-free potassium-sodium niobate (KNN) piezoceramics, which shows a novel relaxor behavior, i.e., frequency dispersion at the transition between different ferroelectric phases. It is very different from the conventional relaxor behavior which occurs at the paraelectric-ferroelectric phase transition. We obtain an ultrahigh piezoelectric coefficient (d33) of 650 ± 20 pC/N, the largest value of nontextured KNN-based ceramics, outperforming that of the commercialized PZT-5H. Atomic-resolution polarization mapping by Z-contrast imaging from different orientations reveals the entire material to comprise polar nanoregions with multiphase coexistence, which is again very different from conventional ferroelectric relaxors which have polar domains within a nonpolar matrix. Theoretical simulations validate the significantly decreased energy barrier and polarization anisotropy, which is facilitated by the high-density domain boundaries with easy polarization rotation bridging the multiphase-coexisting nanodomains. This work demonstrates a new strategy for designing lead-free piezoelectrics with further enhanced performance, which should also be applicable to other functional materials requiring a slush (flexible) state with respect to external stimulus.

3.
Inorg Chem ; 58(1): 428-438, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30582691

ABSTRACT

Rietveld refinement is used to investigate the crystal structure of prepared (0.965 - x)(K0.48Na0.52)NbO3- xBiInO3-0.035(Bi0.5Na0.5)ZrO3 (KNN- xBI-BNZ) ceramics. From refined results, the distortion degree of crystal structures in KNN- xBI-BNZ ceramics presents a rising trend with BiInO3 modification, which is in keeping with the results of diffuseness. The spontaneous polarization ( Ps) is also calculated using refined structural parameters. The submicron domains are observed when x = 0.004, which presents good electrical properties ( d33 = 317 pC/N, Tc = 336 °C) simultaneously. Excellent thermal stability of ceramics modified with BiInO3 is observed in a broad temperature range.

4.
J Am Chem Soc ; 140(45): 15252-15260, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30339004

ABSTRACT

Due to growing environmental concerns on the toxicity of lead-based piezoelectric materials, lead-free alternatives are urgently required but so far have not been able to reach competitive performance. Here we employ a novel phase-boundary engineering strategy utilizing the multiphase convergence, which induces a broad structural flexibility in a wide phase-boundary zone with contiguous polymorphic phase transitions. We achieve an ultrahigh piezoelectric constant ( d33) of 700 ± 30 pC/N in BaTiO3-based ceramics, maintaining >600 pC/N over a wide composition range. Atomic resolution polarization mapping by Z-contrast imaging reveals the coexistence of three ferroelectric phases (T + O + R) at the nanoscale with nanoscale polarization rotation between them. Theoretical simulations confirm greatly reduced energy barriers facilitating polarization rotation. Our lead-free material exceeds the performance of the majority of lead-based systems (including the benchmark PZT-5H) in the temperature range of 10-40 °C, making it suitable as a lead-free replacement in practical applications. This work offers a new paradigm for designing lead-free functional materials with superior electromechanical properties.

5.
ACS Appl Mater Interfaces ; 10(36): 30566-30573, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30107108

ABSTRACT

Because of their high toxicity, lead-based materials in electronic devices must be replaced by lead-free piezoelectric materials. However, some issues remain that hinder the industrial applications of these alternative ceramics. Here, we report the construction of a 0-3-type ceramic composite (KNNS-BNKZ: xZnO), where the Sb-doped ZnO submicronic particles were randomly distributed throughout the potassium-sodium niobate-based ceramic matrix. In this (K,Na)NbO3 (KNN)-based ceramic composite, superior temperature stability, excellent piezoelectric properties, and a high Curie temperature were simultaneously achieved. The unipolar strain varied from +20 to -16% when the temperature was increased from 23 to 200 °C in KNNS-BNKZ: xZnO with x = 0.75. By increasing the ZnO content from x = 0 to x = 5.0, the Curie temperature was increased from 227 to 294 °C. More importantly, the piezoelectric coefficient remained high ( d33 = 480-510 pC/N) for a wide range of compositions, x = 0.25-1.0. Transmission electron microscopy (TEM) experiments showed that the compensatory electric fields generated by the Sb-doped ZnO submicronic particles were responsible for the improved temperature stability. The high piezoelectricity was due to the existence of nanodomains, which were clearly observed in the TEM experiments. The results presented in this work clarify some of the physical mechanisms in this KNN-based ceramic composite, thus advancing the development of lead-free ceramics.

6.
Inorg Chem ; 57(16): 10383-10389, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30059224

ABSTRACT

To further balance the relationship between piezoelectricity and temperature stability, the (0.975 - y)NaNbO3- yBaTiO3-0.025BaZrO3 ( y = 0-0.20) ceramics are developed by constructing a wide tetragonal phase region. Effects of BaTiO3 on the relationships among phase structure, electrical properties, and temperature dependence are investigated. With increasing BaTiO3 contents, the ceramics endure the structural evolutions from orthorhombic phase to tetragonal phase, and then to relaxor cubic phase. A wide tetragonal phase zone of 24-180 °C can be realized in the ceramics with y = 0.08, together with an enhanced piezoelectric coefficient d33 = 215 pC/N. Intriguingly, excellent temperature stability of unipolar strain ( Suni) and piezoelectric coefficient ( d33) are observed in the ceramics with y = 0.08 within 20-180 °C. This work provides an alternative way to enhance piezoelectricity and temperature stability in lead-free piezoceramics.

7.
Phys Chem Chem Phys ; 20(30): 20149-20159, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30027946

ABSTRACT

In this study, 0.96KNNSx-0.01SZ-0.03BNZ ceramics (x = 0-0.08) were used as examples to illustrate the effects of phase boundaries on strain property and temperature stability. The addition of Sb5+ resulted in a rhombohedral-tetragonal (R-T) phase boundary at x = 0.05-0.07, as confirmed by temperature-dependent Raman spectra. In the R-T region, an improved piezoelectric constant (d33 = 390-440 pC N-1) and high unipolar strain (Suni = 0.14-0.15%) were observed due to the dominating intrinsic contribution. More importantly, a favorable temperature stability of Suni was observed in the ceramics with x = 0.05; for example, there was a slight variation of +5% to -13% when the temperature was increased from 20 °C to 180 °C. Through systematic investigations of composition and temperature-dependent strain, methods to improve Suni and consolidate its temperature stability in KNN-based ceramics were subsequently suggested. We believe that this study can promote the understanding and design of KNN-based ceramics with high strain and favorable temperature stability.

8.
J Am Chem Soc ; 138(47): 15459-15464, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27933925

ABSTRACT

Because of growing environmental concerns, the development of lead-free piezoelectric materials with enhanced properties has become of great interest. Here, we report a giant piezoelectric coefficient (d33) of 550 pC/N and a high Curie temperature (TC) of 237 °C in (1-x-y)K1-wNawNb1-zSbzO3-xBiFeO3-yBi0.5Na0.5ZrO3 (KNwNSz-xBF-yBNZ) ceramics by optimizing x, y, z, and w. Atomic-resolution polarization mapping by Z-contrast imaging reveals the intimate coexistence of rhombohedral (R) and tetragonal (T) phases inside nanodomains, that is, a structural origin for the R-T phase boundary in the present KNN system. Hence, the physical origin of high piezoelectric performance can be attributed to a nearly vanishing polarization anisotropy and thus low domain wall energy, facilitating easy polarization rotation between different states under an external field.

9.
ACS Appl Mater Interfaces ; 8(44): 30304-30311, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27750006

ABSTRACT

It is a tough issue to develop dense and water resistant KNbO3 ceramics due to high evaporation and hygroscopicity of K2O. Here, KNbO3:xZnO composite ceramics were used to successfully solve this problem, where ZnO particles were randomly distributed into a KNbO3 matrix. The addition of ZnO hardly affects the phase structure of KNbO3, and moreover, the enhancement of electrical properties, thermal stability, and aging characteristics was observed in KNbO3:xZnO composite ceramics. The composites possessed the maximum d33 of 120 ± 5 pC/N, which is superior to that of pure KNbO3 (d33 = 80 pC/N). More importantly, a strong water resistance and an aging-free characteristic were observed in KNbO3:0.4ZnO. This is the first time for KNbO3 ceramics to simultaneously improve electrical properties and resolve the water-absorbing properties. We believe that these composite ceramics are promising for practical applications.

10.
Adv Mater ; 28(38): 8519-8523, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27441456

ABSTRACT

A superior piezoelectric coefficient (d33 = 570 ± 10 pC N"1 ), the highest value reported to date in potassium-sodium niobate-based ceramics, is obtained in (1-x-y)K1-w Naw Nb1-z Sbz O3-y BaZrO3-x - Bi0.5 K0.5 HfO3 ceramics. This high d33 value can be ascribed to the co-existence of "nano-scale strain domains" (1-2 nm) and a high density of ferroelectric domain boundaries. Therefore, ternary KNN-based ceramics demonstrate the potential for applications.

11.
ACS Appl Mater Interfaces ; 8(29): 18943-53, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27404481

ABSTRACT

A large piezoelectric constant (d33) of ∼480 pC/N was attained in new ternary (1-x-y)K0.5Na0.5Nb0.96Sb0.04O3-xBaSnO3-yBi0.5Na0.5ZrO3 ceramics by forming rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary using the variations of x and y, and such a phase boundary was successfully confirmed by the convergent beam electron diffraction (CBED) patterns. For (1-x)K0.5Na0.5Nb0.96Sb0.04O3-xBaSnO3, the orthorhombic (O) phase is well-maintained for 0 ≤ x ≤ 0.015, and both the R and T phases can be introduced to (0.99-y)K0.5Na0.5Nb0.96Sb0.04O3-0.01BaSnO3-yBi0.5Na0.5ZrO3 with y = 0.025-0.04 by simultaneously tailoring their compositions (x and y); then, R-O-T multiphases can be well-established. The CBED patterns strongly support the existence of R-O-T multiphases in the ceramics with y = 0.035. When the phase transitions endure from O to R-O-T, their piezoelectric activity endures a leapfrog development from ∼165 to ∼480 pC/N. In the region of the R-O-T phase boundary, a large d33 of ∼480 pC/N was attained in the ceramics with x = 0.01 and y = 0.035. In addition, the ceramics with x = 0.01 and y = 0.04 possess a high strain of ∼0.274% due to the multiphases coexistence. According to the variations of dielectric and ferroelectric properties, the enhancement in εr and Pr plays a part in the improved d33 except for the R-O-T phase boundary. We believe that the (K, Na)NbO3 ternary systems can be used to promote piezoelectric activity by forming new phase boundaries.

12.
Dalton Trans ; 44(48): 21141-52, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26598931

ABSTRACT

In this work, we simultaneously achieved a giant d33 and a high TC in a lead-free piezoelectric ternary system of (1-x-y)K0.48Na0.52NbO3-xBiFeO3-yBi0.5Na0.5ZrO3 {(1-x-y)KNN-xBF-yBNZ}. Owing to the rhombohedral-orthorhombic-tetragonal (R-O-T) phase coexistence and the enhanced dielectric and ferroelectric properties, the ceramics with a composition of (x = 0.006, y = 0.04) show a giant d33 of ∼428 pC N(-1) together with a TC of ∼318 °C, thereby proving that the design of ternary systems is an effective way to achieve both high d33 and high TC in KNN-based materials. In addition, a good thermal stability for piezoelectricity was also observed in these ceramics (e.g., d33 > 390 pC N(-1), T ≤ 300 °C). This is the first time such a good comprehensive performance in potassium-sodium niobate materials has been obtained. As a result, we believe that this type of material system with both giant d33 and high TC is a promising candidate for high-temperature piezoelectric devices.

13.
ACS Appl Mater Interfaces ; 7(36): 20332-41, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26302094

ABSTRACT

The piezoelectricity of (K,Na)NbO3 ceramics strongly depends on the phase boundary types as well as the doped compositions. Here, we systematically studied the relationships between the compositions and phase boundary types in (K,Na) (Nb,Sb)O3-Bi0.5Na0.5AO3 (KNNS-BNA, A=Hf, Zr, Ti, Sn) ceramics; then their piezoelectricity can be readily modified. Their phase boundary types are determined by the doped elements. A rhombohedral-tetragonal (R-T) phase boundary can be driven in the compositions range of 0.035≤BNH≤0.040 and 0.035≤BNZ≤0.045; an orthorhombic-tetragonal (O-T) phase boundary is formed in the composition range of 0.005≤BNT≤0.02; and a pure O phase can be only observed regardless of BNS content (≤0.01). In addition, the phase boundary types strongly affect their corresponding piezoelectricities. A larger d33 (∼440-450 pC/N) and a higher d33* (∼742-834 pm/V) can be attained in KNNS-BNA (A=Zr and Hf) ceramics due to the involvement of R-T phase boundary, and unfortunately KNNS-BNA (A=Sn and Ti) ceramics possess a relatively poor piezoelectricity (d33≤200 and d33*<600 pm/V) due to the involvement of other phase structures (O-T or O). In addition, the underlying physical mechanisms for the relationships between piezoelectricity and phase boundary types were also discussed. We believe that comprehensive research can design more excellent ceramic systems concerning potassium-sodium niobate.

14.
ACS Appl Mater Interfaces ; 7(10): 5927-37, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25734451

ABSTRACT

Here we report a strong piezoelectric activity in (1 - x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 lead-free ceramics by designing different phase boundaries. The phase boundaries concerning rhombohedral-orthorhombic-tetragonal (R-O-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were attained by changing BKZS and Sn contents and then were identified by the X-ray diffraction patterns as well as temperature-dependent permittivity and ν1 Raman modes associated with BO6 perovskite octahedron. A high strain (strain = 0.21-0.28% and d33* = 707-880 pm/V) and a strong piezoelectric coefficient (d33 = 415-460 pC/N) were shown in the ceramics located at the multiphase coexistence region. The reported results of this work are superior to that (d33* ∼ 570 pm/V and d33 ∼ 416 pC/N) of the textured (K,Na,Li)(Nb,Ta,Sb)O3 ceramics [Nature 2004, 432, 84]. We believe that the material system of this work will become one of the most promising candidates for piezoelectric actuators.

16.
Dalton Trans ; 44(10): 4440-8, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25679361

ABSTRACT

In this work, (1 - x)(K0.48Na0.52)(Nb(0.95-y-z)Ta(z)Sb(y))O3-xBi0.5(Na0.82K0.18)0.5ZrO3, {abbreviation: KNNST-BNKZ-x-y-z} lead-free piezoceramics were prepared by a conventional solid-state reaction method, and the composition dependence of their phase structures and electrical properties was systematically discussed. Doping with Sb(5+), Ta(5+), and BNKZ plays an important role on the phase boundaries as well as piezoelectric activity. A three-phase coexistence involving rhombohedral-orthorhombic-tetragonal (R-O-T) phases was observed in the ceramics with 0.0325 ≤ x ≤ 0.05, 0.035 ≤ x ≤ 0.065, 0.05 ≤ z ≤ 0.08, indicating that doping with BNKZ, Ta(5+), and Sb(5+) can induce the formation of such a phase boundary by simultaneously increasing TR-O and decreasing TO-T. Enhanced piezoelectric behavior was observed in the ceramics located in the composition region of the R-O-T phase boundary, and a high d33 value of 400 pC N(-1) can be attained by refining their compositions (e.g., x = 0.0325, y = 0.035, and z = 0.05), together with a high TC value of ∼240 °C. Of particular interest is that a large electric field-induced strain of 0.18% (Smax/Emax = 706 pm V(-1)) was also found in the ceramics with x = 0.0325, y = 0.035, and z = 0.05 under a low electric field of 2.5 kV mm(-1). As a result, the piezoelectric activity as well as the strain can be operated in the material system by refining x, y, and z content.

17.
ACS Appl Mater Interfaces ; 6(22): 20358-64, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25384464

ABSTRACT

A high strain is important for practical applications of piezoelectric actuators. Here we reported a high strain in the (K,Na)NbO3 -based ceramics by doping alkaline earths or transition metals. The ceramics possess a high strain (∼0.29%) as well as a large converse piezoelectric coefficient (d33*) up to 688 pm/V, which almost matches that of PZT4 ceramics. The obtained d33* is high for nontextured (K,Na)NbO3-based ceramics. In addition, a higher d33 value (340-407 pC/N) was also attained in the ceramics. Enhanced d33 and d33* values of this work should be attributed to the multiphase coexistence's effect induced by alkaline earths or transition metals. We believe that our research can benefit the developments of (K,Na)NbO3 ceramics and widen their applications range.

18.
Nanoscale Res Lett ; 9(1): 490, 2014.
Article in English | MEDLINE | ID: mdl-25258609

ABSTRACT

Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS: 81.05.ue; 78.67.Sc; 88.80.fh.

19.
Dalton Trans ; 43(30): 11759-66, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24958201

ABSTRACT

In this work, we elucidate the influence of Bi(0.5)Li(0.5)ZrO3 (BLZ) content on the phase structure, microstructure, and electrical properties of (1 -x)K(0.40)Na(0.60)Nb(0.965)Sb(0.035)O3-xBi(0.5)Li(0.5)ZrO3 lead-free ceramics. We simultaneously achieved a giant d33 and a high T(C) in this material system. The coexistence of rhombohedral and tetragonal phases is responsible for such a large d33 in the ceramics with BLZ contents (x) ranging from 0.025 to 0.035. Doping with BLZ not only induces the formation of the phase boundary, but also maintains a high T(C). The ceramic with x = 0.03 shows an enhanced piezoelectric behaviour (d33 ~ 400 pC N(-1) and k(p) ~ 0.47) together with a high T(C) of 292 °C. A good temperature stability for ferroelectricity and piezoelectricity is also observed in these ceramics. This study is the first time that such a good comprehensive performance has been obtained in potassium-sodium niobate materials. We believe that this type of material system possessing giant-d33 and high-T(C) is a promising candidate for use in high-temperature piezoelectric devices.

20.
Dalton Trans ; 43(25): 9419-26, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24848676

ABSTRACT

In this work, the rhombohedral (R) and tetragonal (T) phase boundary of the 0.97(K0.4Na0.6)(Nb1-xSbx)O3-0.03Bi0.5Li0.5ZrO3 piezoceramics has been attained in a wide composition range of 0.035 ≤ x ≤ 0.08, and the Sb(5+) could simultaneously shrink its TR-O and TO-T. A giant d33 of 380-405 pC N(-1) and a TC of 200-292 °C have been observed in the ceramics with the coexistence of both R and T phases. In addition, the ceramics with 0.035 ≤ x ≤ 0.08 also show a good thermal stability of the d33, and an enhanced temperature stability of ferroelectricity could be observed in the ceramic with x = 0.035. As a result, adding the optimum antimony content is an efficient way to promote the electrical properties of potassium-sodium niobate ceramics with the R-T phase boundary.

SELECTION OF CITATIONS
SEARCH DETAIL
...