Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 266: 128987, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33248728

ABSTRACT

Settled algae may be used as nutrient for macrophyte establishment, but also can induce marked macrophyte decline during deep anaerobic decomposition. Sediment microbial fuel cells (SMFCs) may promote the utilization of algae-derived nutrients and relieve bio-toxicity from settled algae to submerged macrophytes, thus facilitating plant production. To test these hypotheses, a 62-day comparative study was designed and conducted in microcosms with the following six treatments: control (open-circuit SMFC), plant (open-circuit SMFC with plants), algae (open-circuit SMFC with algae), algae-plant (open-circuit SMFC with algae and plants), algae-SMFC (closed-circuit SMFC with algae), and algae-plant-SMFC (closed-circuit SMFC with algae and plants). The results showed that the presence of Hydrilla verticillata improved the power generation of SMFCs when algae were used as substrates during the whole operation. The decomposition of sedimented algae experienced two periods since the injection. During the slight decomposition period (14-38 day), the algal retention in sediments was enhanced by H. verticillata as a nutrient source. Nitrogen (N) assimilation in plant shoots was facilitated under electrogenesis due to a simultaneous increase of algae-derived dissolved inorganic carbon (DIC) and ammonium (NH4+) in the water column. At the end of the 38th day, the biomass of H. verticillata were increased by 21.4% and 52.3%, respectively, in the algae-plant and algae-plant-SMFC, compared with that in plant treatment. Obvious NH4+-stress was exerted on H. verticillata during the following intense algal decomposition period (38-62 day). Compared with shoots, roots of H. verticillata were more sensitive to the biotoxicity of algae-derived NH4+. The electrogenetic process diverted the degradation pathway from acetoclastic methanogenesis to electrogenesis via redox cycle, resulting in delayed algal decomposition in algae-SMFC treatment. In addition, electrogenesis enhanced the removal of algae-derived N. As a result, NH4+ toxicity to plant roots was effectively alleviated, and sedimented algae served as a stable nutrient source for plant development. Stable transfer rate of algae-derived N from sediments to plant roots was observed, while the assimilation rate of algae-derived N from water column to plant shoots showed a constant increase in the algae-plant-SMFC treatment. Electrogenesis enhanced N-fixing capacity belonged to rhizosphere of H. verticillata, evidenced by greater enrichment of some plant growth-promoting rhizobacteria (PGPRs), including Bradyrhizobium, Mycobacterium, Paenibacillus, Mesorhizobium, and Roseomonas in the algae-plant-SMFC treatment. At the end of the experiment, marked increases in the production of H. verticillata in algae-plant-SMFC were observed, with 90.1% and 32.8%, respectively, when compared with algae-plant and plant treatments (p < 0.05). SMFC application could be used as a strategy to promote the growth of submerged macrophytes in algae-rich sediments.


Subject(s)
Ammonium Compounds , Bioelectric Energy Sources , Hydrocharitaceae , Geologic Sediments , Nitrogen
2.
PLoS One ; 12(2): e0172757, 2017.
Article in English | MEDLINE | ID: mdl-28241072

ABSTRACT

Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments under closed-circuit. The coupled P-SMFC system has shown good potential for the efficient removal of internal nitrogen.


Subject(s)
Bioelectric Energy Sources , Geologic Sediments/chemistry , Nitrogen/analysis , Plants/metabolism , Ammonium Compounds/chemistry , Bacteria/metabolism , Electrochemistry , Electrodes , Nitrates/chemistry , Nitrogen/chemistry , Oxidation-Reduction , Oxygen/chemistry , Proteobacteria/metabolism , Sequence Analysis, DNA , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...