Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(47): 54322-54334, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967339

ABSTRACT

Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.


Subject(s)
Breast Neoplasms , Nanocomposites , Nanoparticles , Photoacoustic Techniques , Humans , Female , Phosphorus , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Phototherapy , Immunotherapy , Nanocomposites/therapeutic use , Photoacoustic Techniques/methods , Cell Line, Tumor
2.
Int J Nanomedicine ; 18: 3021-3033, 2023.
Article in English | MEDLINE | ID: mdl-37312933

ABSTRACT

Purpose: Photothermal therapy (PTT) is a promising anticancer treatment that involves inducing thermal ablation and enhancing antitumor immune responses. However, it is difficult to completely eradicate tumor foci through thermal ablation alone. Additionally, the PTT elicited antitumor immune responses are often insufficient to prevent tumor recurrence or metastasis, due to the presence of an immunosuppressive microenvironment. Therefore, combining photothermal and immunotherapy is believed to be a more effective treatment approach as it can modulate the immune microenvironment and amplify the post-ablation immune response. Methods: Herein, the indoleamine 2, 3-dioxygenase-1 inhibitors (1-MT) loaded copper (I) phosphide nanocomposites (Cu3P/1-MT NPs) are prepared for PTT and immunotherapy. The thermal variations of the Cu3P/1-MT NPs solution under different conditions were measured. The cellular cytotoxicity and immunogenic cell death (ICD) induction efficiency of Cu3P/1-MT NPs were analyzed by cell counting kit-8 assay and flow cytometry in 4T1 cells. And the immune response and antitumor therapeutic efficacy of Cu3P/1-MT NPs were evaluated in 4T1-tumor bearing mice. Results: Even at low energy of laser irradiation, Cu3P/1-MT NPs remarkably enhanced PTT efficacy and induced immunogenic tumor cell death. Particularly, the tumor-associated antigens (TAAs) could help promote the maturation of dendritic cells (DCs) and antigen presentation, which further activates infiltration of CD8+ T cells through synergistically inhibiting the indoleamine 2, 3-dioxygenase-1. Additionally, Cu3P/1-MT NPs decreased the suppressive immune cells such as regulatory T cells (Tregs) and M2 macrophages, indicating an immune suppression modulation effect. Conclusion: Cu3P/1-MT nanocomposites with excellent photothermal conversion efficiency and immunomodulatory properties were prepared. In addition to enhanced the PTT efficacy and induced immunogenic tumor cell death, it also modulated the immunosuppressive microenvironment. Thereby, this study is expected to offer a practical and convenient approach to amplify the antitumor therapeutic efficiency with photothermal-immunotherapy.


Subject(s)
Copper , Dioxygenases , Animals , Mice , Copper/pharmacology , CD8-Positive T-Lymphocytes , Immunotherapy , Immunomodulation
3.
Front Bioeng Biotechnol ; 11: 1111882, 2023.
Article in English | MEDLINE | ID: mdl-36741755

ABSTRACT

Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.

4.
Macromol Biosci ; 23(4): e2200442, 2023 04.
Article in English | MEDLINE | ID: mdl-36623250

ABSTRACT

Developing proper wound management via wound dressings represents a global challenge. Ideal wound dressings shall encompass multiple integrated functionalities for variable, complex scenarios; however, this is challenging due to the complex molecular design and synthesis process. Herein, polymer composites, cross-linked poly(styrene oxide-co-hexaphenylcyclotrisiloxane)/crosslinked poly(hexaphenylcyclotrisiloxane) (cP(SO-co-HPCTS)/cPHPCTS) with multiple functionalities are prepared by a one-step, open-air method using catalytic ring-opening polymerization. The introduction of a mobile polymer cP(SO-co-HPCTS) endows the composite with good flexibility and self-healing properties at human body temperature. The hydrophobic groups in the main chain provide hydrophobicity and good water resistance, while the hydroxyl groups contained in the end groups enable good adhesion properties. Drugs can be efficiently loaded by blending and then sustainably release from the polymer composite. The material can rapidly degrade in a tetrahydrofuran solution of tetrabutylammonium fluoride due to its SiOSi bonds. The facile, one-step, open-air synthesis procedure and multiple functional properties integrated into the composites provide good prospects for their extensive application and batch production as wound dressing materials.


Subject(s)
Polymers , Wound Healing , Humans , Delayed-Action Preparations/pharmacology , Water/chemistry , Bandages
5.
Front Pharmacol ; 13: 905078, 2022.
Article in English | MEDLINE | ID: mdl-35645842

ABSTRACT

Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness, spatiotemporal selectivity, low side-effects, and immune activation ability has been clinically approved for the treatment of head and neck cancer, esophageal cancer, pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma. Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various smart nanomedicine-based strategies are developed to overcome the barriers of traditional PDT including the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death and tumor resistance to the therapy. More notably, a growing number of studies have focused on improving the therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of PDT induced-tumor destruction, especially the host immune response is summarized, and focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate immunity and adaptive immunity. We expect it will provide some insights for conquering the drawbacks current PDT and expand the range of clinical application through this review.

6.
Adv Sci (Weinh) ; 9(1): e2103836, 2022 01.
Article in English | MEDLINE | ID: mdl-34796689

ABSTRACT

The past decades have witnessed great progress in cancer immunotherapy, which has profoundly revolutionized oncology, whereas low patient response rates and potential immune-related adverse events remain major clinical challenges. With the advantages of controlled delivery and modular flexibility, cancer nanomedicine has offered opportunities to strengthen antitumor immune responses and to sensitize tumor to immunotherapy. Furthermore, tumor-microenvironment (TME)-responsive nanomedicine has been demonstrated to achieve specific and localized amplification of the immune response in tumor tissue in a safe and effective manner, increasing patient response rates to immunotherapy and reducing the immune-related side effects simultaneously. Here, the recent progress of TME-responsive nanomedicine for cancer immunotherapy is summarized, which responds to the signals in the TME, such as weak acidity, reductive environment, high-level reactive oxygen species, hypoxia, overexpressed enzymes, and high-level adenosine triphosphate. Moreover, the potential to combine nanomedicine-based therapy and immunotherapeutic strategies to overcome each step of the cancer-immunity cycle and to enhance antitumor effects is discussed. Finally, existing challenges and further perspectives in this rising field with the hope for improved development of clinical applications are discussed.


Subject(s)
Immunotherapy/methods , Nanomedicine/methods , Neoplasms/drug therapy , Neoplasms/immunology , Tumor Microenvironment/immunology , Humans , Immunity/immunology , Immunologic Factors/immunology , Immunologic Factors/therapeutic use
10.
J Hazard Mater ; 375: 78-85, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31048138

ABSTRACT

This paper studied the fate of Re in the presence of polyaminocarboxy ligand (DTPA, EDTA and NTA) under reducing condition. When SnCl2 as reducing agent, the results indicated the low valent Re was formed. And batch experiments studied the effect of pH and different ligands on the formation of low valent Re complex, the acid condition was favoured for the formation of low valent Re complex, and the order of complexing toward the low valent Re was the following: DTPA > EDTA > NTA. In the condition of pH = 1, DTPA as ligand, the hourglass crystal was obtained. Using ESI-MS, solid-state UV-Vis-NIR spectra, EXAFS, DFT calculation et al, the darkened patch of the hourglass crystal was demonstrated to be Re, and its speciation was dimeric Re2(µ-O)2DTPA.

11.
ACS Nano ; 13(2): 1511-1525, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30632740

ABSTRACT

Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Polymers/chemistry , Polymers/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Photochemotherapy , Pseudomonas aeruginosa/drug effects
12.
Small ; 14(41): e1802008, 2018 10.
Article in English | MEDLINE | ID: mdl-30118562

ABSTRACT

The increased threat of antibiotic resistance has created an urgent need for new strategies. Herein, polyprodrug antimicrobials are proposed to mimic antimicrobial peptides appended with a concurrent drug release property, exhibiting broad-spectrum antibacterial activity and especially high potency to inhibit methicillin-resistant Staphylococcus aureus (MRSA) without inducing resistance. Two series of polyprodrug antimicrobials are fabricated by facile polymerization of triclosan prodrug monomer (TMA) and subsequent quaternization of hydrophilic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), affording PDMAEMA-b-PTMA and PQDMA-b-PTMA, respectively. Optimized samples with proper hydrophobic ratio are screened out, which exhibit remarkable bacterial inhibition and low hemolysis toward red blood cells. Furthermore, synergistic antibacterial mechanisms contribute to the bacteria killing, including serious membrane damage, increased out-diffusion of cytosolic milieu across the membrane, and intracellular reductive milieu-mediated triclosan release. No detectable resistance is observed for polyprodrug antimicrobials against MRSA, which is demonstrated to be better than commercial triclosan and vancomycin against in vivo MRSA-infected burn models and a promising approach to the hurdle of antibiotic resistance in biomedicine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Drug Resistance, Microbial , Hemolysis/drug effects , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Microbial Sensitivity Tests , Nylons/chemistry , Triclosan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...