Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304149, 2024.
Article in English | MEDLINE | ID: mdl-38848430

ABSTRACT

Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.


Subject(s)
Cell Proliferation , Down-Regulation , Glioblastoma , Mitochondria , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Respiration/drug effects , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...