Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 107(1): 293-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18842621

ABSTRACT

Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that genetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10muM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype-dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP.


Subject(s)
Acetylation , Aminobiphenyl Compounds/metabolism , Arylamine N-Acetyltransferase/metabolism , Carcinogens/metabolism , Down-Regulation/genetics , 4-Aminobenzoic Acid/metabolism , Animals , Arylamine N-Acetyltransferase/genetics , Cells, Cultured , Fluorenes , Gene Expression Regulation, Enzymologic/physiology , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mammary Glands, Animal , Polymorphism, Genetic , Rats , Sulfamethazine/metabolism
2.
Toxicol Sci ; 74(2): 253-9, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12773763

ABSTRACT

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine carcinogen prevalent in the human diet. To exert its mutagenic and carcinogenic effects, PhIP undergoes bioactivation to N-hydroxy-PhIP followed by O-esterification via cytosolic acetyltransferases or sulfotransferases to form DNA adducts. We investigated the role of cytosolic acetyltransferases and sulfotransferases and the role of the N-acetyltransferase 2 genetic polymorphism on PhIP DNA-adduct levels in a congenic Syrian hamster model. DNA adduct levels were detected in all hepatic and extrahepatic tissues tested following administration of PhIP (4x100 mg/kg) or N-hydroxy-PhIP (1x50 mg/kg), with the highest levels in pancreas. DNA-adduct levels were higher in the gastrointestinal tract of rapid and slow acetylator hamsters administered N-hydroxy-PhIP. N-hydroxy-PhIP O-acetyltransferase and O-sulfotransferase activities were detected in most hepatic and extrahepatic cytosols derived from rapid and slow acetylator congenic hamsters. N-hydroxy-PhIP O-acetyltransferase activity was significantly higher (p<0.05) in liver, small intestine, and esophagus in rapid than in slow acetylator congenic hamsters. N-hydroxy-PhIP O-acetyltransferase activities correlated significantly with N-acetyltransferase 2 activities across tissues in rapid (r=0.83; p=0.0004) but not in slow (r=0.46; p=0.1142) acetylator congenic hamsters, suggesting catalysis primarily by NAT2 in rapid acetylators but NAT1 in slow acetylators. N-hydroxy-PhIP O-sulfotransferase activities did not vary with acetylator genotype. DNA-adduct levels following administration of PhIP or N-hydroxy-PhIP did not correlate with either N-hydroxy-PhIP O-acetyltransferase or O-sulfotransferase catalytic activities.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Carcinogens/pharmacokinetics , Imidazoles/pharmacokinetics , Acetylation , Animals , Animals, Congenic , Arylamine N-Acetyltransferase/metabolism , Biotransformation , Carcinogens/toxicity , Cricetinae , Cytosol/drug effects , Cytosol/enzymology , DNA/drug effects , DNA Adducts/analysis , DNA Adducts/drug effects , Genotype , Imidazoles/toxicity , Male , Mesocricetus , Polymorphism, Genetic , Pyridines/pharmacokinetics , Pyridines/toxicity
4.
Pharmacogenetics ; 13(3): 159-67, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12618593

ABSTRACT

Arylamine carcinogens induce prostate tumours in rodent models and may contribute to the aetiology of human prostate cancers. N-acetylation and O-acetylation, catalysed by N-acetyltransferase 1 (NAT1) and 2 (NAT2), activate and/or deactivate arylamines to electrophilic intermediates that bind DNA and initiate tumours in target organs. NAT1 and NAT2 are both subject to genetic polymorphism in humans, and molecular epidemiological investigations suggest that NAT1 and/or NAT2 acetylator genotype modifies risk for prostate cancers. A Syrian hamster model congenic at the NAT2 locus was used to investigate the role of acetylator genotype in N- and O-acetylation of aromatic and heterocyclic amine carcinogens in the liver and prostate. A gene dose-response (NAT2*15/*15>NAT2*15/*16A>NAT2*16A/*16A) relationship was observed in liver and prostate cytosol towards the N-acetylation of p-aminobenzoic acid, 2-aminofluorene, beta-napthylamine, 4-aminobiphenyl, and 3,2'-dimethyl-4-aminobiphenyl. NAT1 and NAT2 were separated and partially purified from liver and prostate cytosol. NAT1 and NAT2 in liver and prostate catalysed -acetylation of the arylamines above and O-acetylation of N-hydroxy derivatives of 2-aminofluorene, 4-aminobiphenyl and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Rates were higher in rapid versus slow acetylators when catalysed by NAT2 but not when catalysed by NAT1. Partially purified prostate NAT2 exhibited higher apparent K(m) and V(max) than NAT1. Prostate NAT1 mRNA levels were higher than NAT2 and neither NAT1 nor NAT2 mRNA level differed with NAT2 acetylator genotype. The results provide mechanistic support for a role of NAT1 and/or NAT2 acetylator polymorphism(s) in human prostate cancer risk related to aromatic and/or heterocyclic amine carcinogens.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Isoenzymes/genetics , Prostate/enzymology , Animals , Arylamine N-Acetyltransferase/metabolism , Base Sequence , Cricetinae , DNA Probes , Isoenzymes/metabolism , Liver/enzymology , Male , Mesocricetus
5.
Environ Mol Mutagen ; 40(3): 161-7, 2002.
Article in English | MEDLINE | ID: mdl-12355549

ABSTRACT

N-acetyltransferase-1 (NAT1) and N-acetyltransferase-2 (NAT2) are important in the metabolism of aromatic and heterocyclic amine carcinogens that induce prostate tumors in the rat. We investigated the association of genetic polymorphisms in NAT1 and NAT2, alone and in combination, with human prostate cancer. Incident prostate cancer cases and controls in a hospital-based case-control study were frequency-matched for age, race, and referral pattern. The frequency of slow acetylator NAT1 genotypes (NAT1*14, *15, *17) was 5.8% in controls but absent in cases. In contrast, in comparison with all other NAT1 genotypes the putative rapid acetylator NAT1 genotype (NAT1*10) was significantly higher in prostate cancer cases than controls (OR, 2.17; 95% CI, 1.08-4.33; P = 0.03). Combinations of NAT1*10 with NAT2 slow acetylator genotypes (OR, 5.08; 95% CI, 1.56-16.5; P = 0.008) or with NAT2 very slow (homozygous NAT2*5) acetylator genotypes (OR, 7.50; 95% CI, 1.55-15.4; P = 0.016) further increased prostate cancer risk. The results of this small pilot study suggest increased susceptibility to prostate cancer for subjects with combinations of NAT1*10 and slow (particularly very slow) NAT2 acetylator genotypes. This finding should be investigated further in larger cohorts and in other ethnic populations.


Subject(s)
Arylamine N-Acetyltransferase/genetics , Isoenzymes/genetics , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Aged , Alleles , Case-Control Studies , Genotype , Humans , Male , Middle Aged , Odds Ratio , Pilot Projects , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...