Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 364: 143235, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218259

ABSTRACT

Microplastics negatively impact soil health and productivity. Organic fertilizers constitute significant contributors of microplastics in agricultural soils. Nevertheless, comprehensive data on the diversity of microplastics in long-term fertilized soils remain unavailable. In this study, we assessed the presence of microplastics in soils subjected to application of three different organic fertilizers (pig manure, chicken manure, and sludge composts) over 12 years, and evaluated the potential ecological risks posed by microplastic accumulation. The average microplastic abundance in soil was 368.88 ± 207.97 (range: 90-910) items/kg. Microplastic abundance differed among fertilization treatments, with substantial increases of 16.67%, 71.67%, and 61.43% upon low to high application of the three treatments, respectively. Overall, the microplastics predominantly comprised fibers (70.94%) and fragments (25.25%), of which a substantial proportion constituted light-colored microplastics (transparent and white). The size of microplastics was mainly concentrated in the 1-2 mm range (39.96%), with rayon, polypropylene, polyester, and polyethylene being identified as the major types. The risk assessment indices of the three treatments were 229.38, 257.64, and 175.89, respectively, and were all classified as level 4 (high risk). The microplastic diversity integrated index and principal component analysis revealed that microplastics were uniformly distributed throughout the 0-20 cm soil depth consequent to tillage activity. Together, these findings provide a comprehensive assessment of microplastic pollution in long-term fertilized soils and serve as a scientific basis for reducing microplastic contamination in agricultural soils.


Subject(s)
Agriculture , Environmental Monitoring , Fertilizers , Microplastics , Soil Pollutants , Soil , Fertilizers/analysis , Soil Pollutants/analysis , Microplastics/analysis , Soil/chemistry , Agriculture/methods , Animals , Manure/analysis , Swine , Chickens , Risk Assessment , Plastics/analysis , Sewage/chemistry
2.
PLoS One ; 19(6): e0305688, 2024.
Article in English | MEDLINE | ID: mdl-38917096

ABSTRACT

Increases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants. We used a meta-analysis approach based on 31 studies 343 observations) to examine the effects of elevated O3 on malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) activities in herbaceous plants. Globally, important as they constitute the majority of the world's food crops. We partitioned the variation in effect size found in the meta-analysis according to the presence of plant species (ornamental herb, rice, and wheat), O3 concentration, and duration of O3 stress in plants. Our results showed that the effects of elevated O3 on plant membrane lipid peroxidation depending on plant species, O3 concentration, and duration of O3 stress in plants. The wheat SOD and POD activity was significantly lower compared to the herbs and rice (P<0.01). The SOD activity of all herbaceous plants increased by 34.6%, 10.5%, and 26.3% for exposure times to elevated O3 environments of 1-12, 13-30, and 31-60 days, respectively. When the exposure time was more than 60 days, SOD activity did not increase but significantly decreased by 12.1%. However, the POD activity of herbaceous plants increased by 30.4%, 57.3%, 21.9% and 5.81%, respectively, when exposure time of herbaceous plants in elevated O3 environment was 1-12, 13-30, 31-60 and more than 60 days. Our meta-analysis revealed that (1) rice is more resistant to elevated O3 than wheat and ornamental herbs likely because of the higher activity of antioxidant components (e.g., POD) in the symplasts, (2) exposure to elevated O3 concentrations for >60 days, may result in antioxidant SOD lose its regulatory ability, and the antioxidant component POD in the symplast is mainly used to resist O3 damage, and (3) the important factors affected the activity of SOD and POD in plants were not consistent: the duration of O3 stress in plants was more important than plant species and O3 concentration for SOD activity. However, for POD activity, plant species was the most important factor.


Subject(s)
Antioxidants , Ozone , Superoxide Dismutase , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Lipid Peroxidation , Plants/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Oryza/growth & development , Oryza/metabolism , Peroxidase/metabolism
3.
J Environ Manage ; 311: 114818, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35247758

ABSTRACT

Ammonia volatilization (AV) dominates the pathway of nitrogen (N) fertilizer losses in crops throughout the world. However, different methods are highly responsible for the different measurements of AV. The existing techniques were separated into static chamber methods (SCM), dynamic chamber methods (DCM), calibrated Dräger-tube method (DTM) and micrometeorological methods (MMM), which were analyzed by a meta-study of 595 observations from 33 published studies. An exponential relationship (P < 0.01) was found between AV and the N fertilizer applied to wheat and maize using all the methods. The amount of AV using SCM was the lowest. The AV monitored by DCM was 24.5%-55.0% (wheat) and 46.9%-65.0% (maize) lower than that for the DTM. Additionally, the AV measured by DTM did not differ significantly in the wheat season but was 58.9% lower (P < 0.05) in the maize season than that in the MMM. To reveal the influencing factors responsible that were for DCM and DTM, a field experiment was conducted during the period of Oct. 2016 to Oct. 2017. The study indicated that the AV was 15.8%-28.3% (wheat, P < 0.05) and 36.7%-44.2% (maize, P < 0.05) lower when monitored by the DCM than when estimated by DTM. The concentration of soil NH4+-N, air temperature, and wind speed positively correlated with the NH3 fluxes. In addition, there was a significant linear correlation (P < 0.01) between the AV measured by DCM and DTM when the wind speed was <1.5 m s-1. This study highlighted the fact that wind speed was the main factor that caused the large difference between DCM and DTM. Herein, DTM or MMM was first recommended, and DCM was accepted when wind speed was <1.5 m s-1 for quantitative estimates of AV. However, only a straight comparison between DCM and DTM under the same field experiment was done, the other comparisons only being based on similar fertilization and environmental conditions. Consequently, the differences between methods have to be treated carefully.

4.
Sci Total Environ ; 764: 142884, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33757238

ABSTRACT

A thorough elucidation of the coupled effects of N fertilization and straw incorporation on N2O emissions and N losses is crucial for alleviating negative environmental impacts in intensively farmed regions. Here, we conducted an in situ 15N tracing experiment to assess the source of N2O emissions and fate of fertilizer-N in soil intensively farmed with summer maize (Zea mays L.). Four treatments, i.e., no N fertilization and no straw incorporation (N0S0), straw incorporation only (N0S1), N fertilization only (N1S0), and N fertilization plus straw incorporation (N1S1), were established in the study. Compared with straw removal, straw incorporation increased the seasonal N2O emissions by 22.3% but reduced the N2O emissions per unit of applied N by 6.22% (P > 0.05). The emission of fertilizer-derived N2O occurred mainly in the 13-17 days after fertilization; thereafter, the ratio of fertilizer-derived N2O fluxes would be less than 5%. N fertilization significantly stimulated non-fertilizer-derived N2O emissions and soil CO2 fluxes, especially when straw was incorporated (P < 0.05), indicating that N fertilization might have triggered the mineralization of straw-N and/or native soil organic N. The soil NO3--N concentration in straw-incorporated plots tended to be lower than that in straw-removed plots, especially after N fertilization events. Straw incorporation sequestered 52.5% (27.4 kg N ha-1) more fertilizer-N in 1 m of soil than straw removal (P < 0.05) while significantly increasing the fertilizer-N harvest index and maintaining grain yield. Overall, compared with straw removal, straw incorporation significantly reduced total fertilizer-N losses (by 12.8%, i.e., 14.58 kg N ha-1; P < 0.05). Our study highlights the benefits of straw incorporation for increasing in-season and multiseason fertilizer-N use efficiencies and alleviating fertilizer-N-induced environmental costs in intensively farmed regions.

5.
Environ Pollut ; 278: 116852, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33740603

ABSTRACT

Excess of water irrigation and fertilizer consumption by crops has resulted in high soil nitrogen (N) losses and underground water contamination not only in China but worldwide. This study explored the effects of soil N input, soil N output, as well as the effect of different irrigation and N- fertilizer managements on residual N. For this, two consecutive years of winter wheat (Triticum aestivum L.) -summer maize (Zea mays L.) rotation was conducted with: N applied at 0 kg N ha-1 yr-1, 420 kg N ha-1 yr-1 and 600 kg N ha-1 yr-1 under fertigation (DN0, DN420, DN600), and N applied at 0 kg N ha-1 yr-1 and 600 kg N ha-1 yr-1 under flood irrigation (FN0, FN600). The results demonstrated that low irrigation water consumption resulted in a 57.2% lower of irrigation-N input (p < 0.05) in DN600 when compared to FN600, especially in a rainy year like 2015-2016. For N output, no significant difference was found with all N treatments. Soil gaseous N losses were highly correlated with fertilization (p < 0.001) and were reduced by 23.6%-41.7% when fertilizer N was decreased by 30%. Soil N leaching was highly affected by irrigation and a higher reduction was observed under saving irrigation (reduced by 33.9%-57.3%) than under optimized fertilization (reduced by 23.6%-50.7%). The net N surplus was significantly increased with N application rate but was not affected by irrigation treatments. Under the same N level (600 kg N ha-1 yr-1), fertigation increased the Total Nitrogen (TN) stock by 17.5% (0-100 cm) as compared to flood irrigation. These results highlighted the importance to further reduction of soil N losses under optimized fertilization and irrigation combined with N stabilizers or balanced- N fertilization for future agriculture development.


Subject(s)
Soil , Triticum , Agriculture , China , Fertilization , Fertilizers/analysis , Nitrogen/analysis , Zea mays
6.
Sci Rep ; 10(1): 5907, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245982

ABSTRACT

In the wheat-maize rotation cultivation system in northern China, excessive irrigation and over-fertilization have depleted groundwater and increased nitrogen (N) losses. These problems can be addressed by optimized N fertilization and water-saving irrigation. We evaluated the effects of these practices on greenhouse gas emissions (GHG), net profit, and soil carbon (C) sequestration. We conducted a field experiment with flood irrigation (FN0, 0 kg N ha-1 yr-1, FN600, 600 kg N ha-1 yr-1) and drip fertigation treatments (DN0, 0 kg N ha-1 yr-1; DN420, 420 kg N ha-1 yr-1; DN600, 600 kg N ha-1 yr-1) in 2015-2017. Compared with FN600, DN600 decreased direct GHGs (N2O + CH4) emissions by 21%, and increased the net GHG balance, GHG intensity, irrigation water-use efficiency (IWUE), and soil organic C content (ΔSOC) by 13%, 12%, 88%, and 89.8%, respectively. Higher costs in DN600 (for electricity, labour, polyethylene) led to a 33.8% lower net profit than in FN600. Compared with FN600, DN420 reduced N and irrigation water by 30% and 46%, respectively, which increased partial factor productivity and IWUE (by 49% and 94%, respectively), but DN420 did not affect GHG mitigation or net profit. Because lower profit is the key factor limiting the technical extension of fertigation, financial subsidies should be made available for farmers to install fertigation technology.


Subject(s)
Agricultural Irrigation/methods , Crop Production/methods , Fertilizers , Greenhouse Effect/prevention & control , Nitrous Oxide/metabolism , Carbon Sequestration , China , Greenhouse Gases/metabolism , Nitrogen/chemistry , Soil/chemistry , Triticum/metabolism , Zea mays/metabolism
7.
Sci Total Environ ; 596-597: 61-68, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28415005

ABSTRACT

Global population increase will require rapid increase of food production from existing agricultural land by 2050, which will inevitably mean the increase of agricultural productivity. Due to agricultural sustainable intensification since the 1990s, crop production in Huantai County of northern China has risen to 15tha-1yr-1 for the annual wheat-maize rotation system. We examined the temporal dynamics of nitrogen (N) budget, N losses, and N use efficiency (NUE) during the 35years (1980-2014) in Huantai. The results revealed that atmospheric N deposition increased 220% while reactive N losses decreased by 21.5% from 1980s to 2010s. During 1980-2002, annual N partial factor productivity (PFPN), apparent NUE and N recovery efficiency (REN) increased from 20.3 to 40.7kggrainkg-1Nfert, from 36.5% to 71.0%, and from 32.4% to 57.7%, respectively; meanwhile, reactive N losses intensity, land use intensity and N use intensity decreased by 69.8%, 53.4%, 50.0%, respectively, but without further significant changes after 2002. Overall increases in NUE and decreases in N losses were largely due to the introduction of optimized fertilization practice, mechanization and increased incorporation of crop straw in Huantai. Straw incorporation was also significant in soil N stock accrual and fertility improvement. By 2030, northern China may reach the lowest end of PFPN values in developed countries (>45kggrainkg-1Nfert). These agricultural sustainable intensification practices will be critical in maintaining high grain yields and associated decreases in environmental pollution, although water use efficiency in the region still needs to be improved.

SELECTION OF CITATIONS
SEARCH DETAIL