Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(24): 11431-11437, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38814822

ABSTRACT

Lead-free organic-inorganic hybrid perovskites are one class of promising optoelectronic materials that have attracted much attention due to their outstanding stability and environmentally friendly nature. However, the intrinsic band gap far from the Shockley-Queisser limit and the inferior electrical properties largely limit their applicability. Here, a considerable band-gap narrowing from 2.43 to 1.64 eV with the compression rate up to 32.5% is achieved via high-pressure engineering in the lead-free hybrid perovskite MA3Sb2I9. Meanwhile, the electric transport process changes from the initial interaction of both ions and electrons to only the contribution of electrons upon compression. The alteration in electrical characteristics is ascribed to the vibration limitation of organic ions and the enhanced orbital overlap, resulting from the reduction of the Sb-I bond length through pressure-induced phase transitions. This work not only systematically investigates the correlation between the structural and optoelectronic properties of MA3Sb2I9 but also provides a potential pathway for optimizing electrical properties in lead-free hybrid perovskites.

2.
Nanoscale ; 16(23): 11327-11335, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804912

ABSTRACT

Carbon dots (CDs) have gained intensive interest owing to their small size, unique structure, excellent photoluminescence (PL) properties and broad applications. In particular, pressure-triggered irreversible piezochromic behavior of fluorescent CDs was previously reported and attributed to the sp2-sp3 transition in the carbon core or aggregation-induced emission under high pressure. Here, we report the reversible piezochromic behavior of microwave-heating synthesized CDs (named M-CDs) using ethylenediamine and aspartic acid as precursors. Under a loading/unloading cycle, the PL intensity of M-CDs decreased continuously with the pressure increasing from 101 kPa up to 20 GPa, and the maximum emission of M-CDs at 101 kPa (λmax = 550 nm) was slightly blue-shifted to 541 nm at 20 GPa, but when the pressure was released from 20 GPa to normal environmental conditions, both the emission wavelength and the PL intensity of M-CDs returned to their initial states at 101 kPa. The control sample was also synthesized using the same precursors but through a hydrothermal method and thus named H-CDs. Both H-CDs and M-CDs have similar particle sizes, morphology and excitation-dependent PL behavior under 101 kPa; however, H-CDs showed a typical piezochromic behavior with the emission blue-shifted from 518 to 491 nm when the pressure was increased from 101 kPa to 0.97 GPa, and then red-shifted from 491 to 530 nm when the pressure was increased up to 10.53 GPa. This irreversible behavior of H-CDs was accompanied by a 2-fold enhancement of their PL intensity after releasing the pressure. The remarkable different behaviors of M-CDs and H-CDs under a loading/unloading cycle are caused by different interior structures of M-CDs and H-CDs due to different synthetic processes, which is worthy of further research.

3.
Small ; : e2309922, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593357

ABSTRACT

Self-trapped exciton (STE) luminescence, typically associated with structural deformation of excited states, has attracted significant attention in metal halide materials recently. However, the mechanism of multiexciton STE emissions in certain metal halide crystals remains largely unexplored. This study investigates dual luminescence emissions in HCOO- doped Cs3Cu2I5 single crystals using transient and steady-state spectroscopy. The dual emissions are attributed to intrinsic STE luminescence originating from the host lattice and extrinsic STE luminescence induced by external dopants, respectively, each of which can be triggered independently at distinct energy levels. Theoretical calculations reveal that multiexciton emission originates from structural distortion of the host and dopant STEs within the 0D lattice in their respective excited states. By meticulously tuning the excitation wavelength and selectively exciting different STEs, the dynamic alteration of color change in Cs3Cu2I5:HCOO- crystals is demonstrated. Ultimately, owing to an extraordinarily high photoluminescence quantum yield (99.01%) and a diminished degree of self-absorption in Cs3Cu2I5:HCOO- crystals, they exhibit remarkable X-ray scintillation characteristics with light yield being improved by 5.4 times as compared to that of pristine Cs3Cu2I5 crystals, opening up exciting avenues for achieving low-dose X-ray detection and imaging.

4.
Angew Chem Int Ed Engl ; : e202406015, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635006

ABSTRACT

Piezochromic materials refer to a class of matters that alter their photoluminescence (PL) colors in response to the external stimuli, which exhibit promising smart applications in anti-counterfeiting, optoelectronic memory and pressure-sensing. However, so far, most reported piezochromic materials have been confined to organic materials or hybrid materials containing organic moieties with limited piezochromic range of less than 100 nm in visible region. Here, we achieved an intriguing piezochromism in all-inorganic zero-dimensional (0D) Cs3Cu2Cl5 nanocrystals (NCs) with a considerable piezochromic range of 232 nm because of their unique inorganic rigid structure. The PL energy shifted from the lowest-energy red fluorescence (1.85 eV) to the highest-energy blue fluorescence (2.83 eV), covering almost the entire visible wavelength range. Pressure-modulated self-trapped exciton emission between different energy levels of self-trapped states within Cs3Cu2Cl5 NCs was the main reason for this piezochromism property. Note that the quenched emission, which is over five times more intense than that in the initial state, is retained under ambient conditions upon decompression. This work provides a promising pressure indicating material, particularly used in pressure stability monitoring for equipment working at extreme environments.

5.
J Phys Chem Lett ; 15(7): 2031-2038, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38349964

ABSTRACT

Three-dimensional (3D) cationic lead halide hybrids constructed by organic ions and inorganic networks via coordination bonds are a promising material for solid-state lighting due to their exceptional environmental stability and broad-spectrum emission. Nevertheless, their fluorescence properties are hindered by the limited lattice distortion from extensive connectivity within the inorganic network. Here, a dramatic 100-fold enhancement of self-trapped exciton (STE) emission is achieved in 3D hybrid material [Pb2Br2][O2C(CH2)4CO2] via pressure-triggered phase transition. Notably, pressure-treated material exhibits a 110 nm redshift with 1.5-fold enhancement compared to the initial state after pressure was completely released. The irreversible structural phase transition intensifies the [PbBr3O3] octahedral distortion, which is highly responsible for the optimization of quenched emission. These findings present a promising strategy for improving the optical properties of 3D halide hybrids with relatively high stability and thus facilitate their practical applications by pressure-driven phase transition engineering.

6.
Adv Sci (Weinh) ; 11(10): e2306937, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38143277

ABSTRACT

Developing hybrid metal halides with self-trapped exciton (STE) emission is a powerful and promising approach to achieve single-component phosphors for wide-color-gamut display and illumination. Nevertheless, it is difficult to generate STEs and broadband emission in the classical and widely used 3D systems, owing to the great structural connectivity of metal-halogen networks. Here, high pressure is implemented to achieve dual emission and dramatical emission enhancement in 3D metal halide of [Pb3 Br4 ][O2 C(CH2 )2 CO2 ]. The pressure-induced new emission is ascribed to the radiation recombination of STEs from the Pb2 Br2 O2 tetrahedra with the promoted distortion through the isostructural phase transition. Furthermore, the wide range of emission chromaticity can be regulated by controlling the distortion order of different polyhedral units upon compression. This work not only constructs the relationship between structure and optical behavior of [Pb3 Br4 ][O2 C(CH2 )2 CO2 ], but also provides new strategies for optimizing broadband emission toward potential applications in solid-state lighting.

7.
Nano Lett ; 23(24): 11982-11988, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38051759

ABSTRACT

The strained interface of core@shell nanocrystals (NCs) can effectively modulate the energy level alignment, thereby significantly affecting the optical properties. Herein, the unique photoluminescence (PL) response of doped Mn ions is introduced as a robust probe to detect the targeted pressure-strain relation of CdS@ZnS NCs. Results show that the core experiences actually less pressure than the applied external pressure, attributed to the pressure-induced optimized interface that reduces the compressive strain on core. The pressure difference between core and shell increases the conduction band and valence band offsets and further achieves the core@shell configuration transition from quasi type II to type I. Accordingly, the PL intensity of CdS@ZnS NCs slightly increases, along with a faster blue-shift rate of PL peak under low pressure. This study elucidates the interplay between external physical pressure and interfacial chemical stress for core@shell NCs, leading to precise construction of interface engineering for practical applications.

8.
Angew Chem Int Ed Engl ; 62(39): e202308662, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37565546

ABSTRACT

Optical force probes that can release force-dependent and visualized signals with minimal changes in the polymer main chains under mechanical load are highly sought after but currently limited. In this study, we introduce a flex-activated mechanophore (FA) based on the Diels-Alder adduct of anthracene and dimethyl acetylenedicarboxylatea that exhibits turn-on mechanofluorescence. We demonstrate that when FA is incorporated into polymer networks or in its crystalline state, it can release fluorescent anthracenes through a retro-Diels-Alder mechanochemical reaction under compression or hydrostatic high pressure, respectively. The flex-activated mechanism of FA is successfully confirmed. Furthermore, we systematically modulate the force delivered to the mechanophore by varying the crosslinking density of the networks and the applied macroscopic pressures. This modulation leads to incremental increases in mechanophore activation, successive release of anthracenes, and quantitative enhancement of fluorescence intensity. The exceptional potential of FA as a sensitive force probe in different bulk states is highlighted, benefiting from its unique flex-activated mode with highly emissive fluorophore releasing. Overall, this report enriches our understanding of the structures and functions of flex-activated mechanophores and polymeric materials.

9.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37428261

ABSTRACT

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

10.
Sci Bull (Beijing) ; 68(15): 1588-1590, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37455167
11.
Small ; 19(21): e2300455, 2023 May.
Article in English | MEDLINE | ID: mdl-36808884

ABSTRACT

Copper(I)-based halides have recently attracted increasing attention as a substitute for lead halides, owing to their nontoxicity, abundance, unique structure, and optoelectric properties. However, exploring an effective strategy to further improve their optical activities and revealing structure-optical property relationships still remain a great concern. Here, by using high pressure technique, a remarkable enhancement of self-trapped exciton (STE) emission associated with the energy exchange between multiple self-trapped states in zero-dimensional lead-free halide Cs3 Cu2 I5 NCs is successfully achieved. Furthermore, high-pressure processing endows the piezochromism of Cs3 Cu2 I5 NCs by experiencing a white light and a strong purple light emission, which is able to be stabilized at near-ambient pressure. The distortion of [Cu2 I5 ] clusters composing of tetrahedral [CuI4 ] and trigonal planar [CuI3 ] and the decreased Cu-Cu distance between the adjacent Cu-I tetrahedron and triangle are responsible for the significant STEs emission enhancement under high pressure. The experiments combined with first-principles calculations not only shed light on the structure-optical property relationships of [Cu2 I5 ] clusters halide, but also provide guidance for improving emission intensity that is highly desirable in solid-state lighting applications.

12.
J Phys Chem Lett ; 13(50): 11837-11843, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36520022

ABSTRACT

Although seeking an effective strategy for further improving their optical properties is a great challenge, two-dimensional (2D) halide perovskites have attracted a significant amount of attention because of their performance. In this regard, the pressure-induced emission accompanied by a remarkable pressure-enhanced emission is achieved without a phase transition in 2D vacancy-ordered perovskite Cs3Bi2Cl9 nanocrystals (NCs). Note that the initial Cs3Bi2Cl9 NCs possess extremely strong electron-phonon coupling, leading to the easy annihilation of trapped excitons by the phonon. Upon compression, pressure could effectively suppress phonon-assisted nonradiative decay and give rise to an intriguing emission from "0" to "1". Both the weakened electron-phonon coupling and the relaxed halide octahedral distortion benefiting from the vacancy-ordered structure contributed to the subsequent enhanced emission. This work not only elucidates the underlying photophysical mechanism but also identifies pressure engineering as a robust means for improving their potential applications in environmentally friendly solid-state lighting at extremes.

14.
Chem Sci ; 12(44): 14711-14717, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34820086

ABSTRACT

Developing single-component materials with bright-white emission is required for energy-saving applications. Self-trapped exciton (STE) emission is regarded as a robust way to generate intrinsic white light in halide perovskites. However, STE emission usually occurs in low-dimensional perovskites whereby a lower level of structural connectivity reduces the conductivity. Enabling conventional three-dimensional (3D) perovskites to produce STEs to elicit competitive white emission is challenging. Here, we first achieved STEs-related emission of white light with outstanding chromaticity coordinates of (0.330, 0.325) in typical 3D perovskites, Mn-doped CsPbBr3 nanocrystals (NCs), through pressure processing. Remarkable piezochromism from red to blue was also realized in compressed Mn-doped CsPbBr3 NCs. Doping engineering by size-mismatched Mn dopants could give rise to the formation of localized carriers. Hence, high pressure could further induce octahedra distortion to accommodate the STEs, which has never occurred in pure 3D perovskites. Our study not only offers deep insights into the photophysical nature of perovskites, it also provides a promising strategy towards high-quality, stable white-light emission.

15.
J Am Chem Soc ; 143(37): 15176-15184, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34506135

ABSTRACT

Maximizing the regeneration of singlet excitons remains a considerable challenge in deep-blue emission systems to obtain low-cost, high-efficiency fluorescent materials. However, the formation of the long-lifetime triplet excitons generally dominates the radiative process, making it greatly difficult to harvest deep-blue emission with high color purity because of the depression of singlet excitons. Here, a very bright deep-blue emission in double perovskite Cs2Na0.4Ag0.6InCl6 alloyed with Bi doping (CNAICB) was successfully achieved by pressure-driven reverse intersystem crossing (RISC), an abnormal photophysical process of energy transfer from the excited triplet state back to the singlet. Therein, the inherently broad emission of CNAICB was associated with the self-trapped excitons (STEs) at excited triplet states, whereas the radiative recombination of STEs populated in excited singlet states was responsible for the observed deep-blue emission. Moreover, the deep-blue emission corresponds to Commission Internationale de L'Eclairage (CIE) coordinates (0.16, 0.06) at 5.01 GPa, which meets the requirement of Rec. 2020 display standards. Likewise, pressure was introduced as an efficient tool to rule out the possibility of the recombination of free excitons and clarify the long-standing conventional dispute over the origin of the low-wavelength emission of Cs2AgInCl6. Our study not only demonstrates that pressure can be a robust means to boost the deep-blue emission but also provides deep insights into the structure-property relationship of lead-free CNAICB double perovskites.

16.
J Am Chem Soc ; 143(28): 10659-10667, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34232026

ABSTRACT

In this work, through the introduction of different lengths of alkoxy chains to the dinuclear cyclometalated platinum(II) complexes, the apparent color, solubility, luminescence properties, and self-assembly behaviors have been remarkably modulated. In the solid state, the luminescence properties have been found to arise from emission origins that switch between the 3MMLCT excited state in the red solids and the 3IL excited state in the yellow state, depending on the alkoxy chain lengths. The luminescence of the yellow solids is found to show obvious bathochromic shifts under mechanical grinding and decreased intensity under controllable hydrostatic pressure. However, the emission of the red solids exhibits both a bathochromic shift and reduced intensity due to the isotropic compression-induced shortening of the Pt···Pt and π-π distances. By combining the data obtained from X-ray diffraction (XRD), infrared (IR), and X-ray single crystal structure, a better understanding of the relationship between molecular aggregation and photophysical properties has been realized, suggesting that the length of the alkoxy chains plays an important role in governing the supramolecular assemblies.

17.
Adv Mater ; 33(31): e2100323, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34151466

ABSTRACT

Pressure-induced emission (PIE) is extensively studied in halide perovskites or derivative hybrid halides. However, owing to the soft inorganic lattice of these materials, the intense emission is barely retained under ambient conditions, thus largely limiting their practical applications in optoelectronics at atmospheric pressure. Here, remarkably enhanced emission in microtubules of the 0D hybrid halide (C5 H7 N2 )2 ZnBr4 ((4AMP)2 ZnBr4 ) is successfully achieved by means of pressure treatment at room temperature. Notably, the emission, which is over ten times more intense than the emission in the initial state, is retained under ambient conditions upon the complete release of pressure. Furthermore, the pressure processing enables the tuning of "sky blue light" before compression to "cool daylight" with a remarkable quantum yield of 88.52% after decompression, which is of considerable interest for applications in next-generation lighting and displays. The irreversible electronic structural transition, induced by the steric hindrance with respect to complexly configurational organic molecules [4AMP], is highly responsible for the eventual retention of PIE and tuning of the color temperature. The findings represent a significant step toward the capture of PIE under ambient conditions, thus facilitating its potential solid-state lighting applications.

18.
Adv Sci (Weinh) ; 8(9): 2004853, 2021 May.
Article in English | MEDLINE | ID: mdl-33977076

ABSTRACT

Understanding the structure-property relationships in Zero-dimensional (0D) organic-inorganic metal halide perovskites (OMHPs) is essential for their use in optoelectronic applications. Moreover, increasing the emission intensity, particularly for blue emission, is considerably a challenge. Here, intriguing pressure-induced emission (PIE) is successfully achieved from an initially nonluminous 0D OMHP [(C6H11NH3)4BiBr6]Br·CH3CN (Cy4BiBr7 ) upon compression. The emission intensity increases significantly, even reaching high-efficiency blue luminescence, as the external pressure is increased to 4.9 GPa. Analyses of the in situ high-pressure experiments and first-principle calculations indicate that the observed PIE can be attributed to the enhanced exciton binding energy associated with [BiBr6]3- octahedron distortion under pressure. This study of Cy4BiBr7 sheds light on the relationship between the structure and optical properties of OMHPs. The results may improve potential applications of such materials in the fields of pressure sensing and trademark security.

19.
Angew Chem Int Ed Engl ; 60(18): 10082-10088, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33759324

ABSTRACT

The pressure-induced emission (PIE) behavior of halide perovskites has attracted widespread attention and has potential application in pressure sensing. However, high-pressure reversibility largely inhibits practical applications. Here, we describe the emission enhancement and non-doping control of the color temperature in two-dimensional perovskite (C6 H5 CH2 CH2 NH3 )2 PbCl4 ((PEA)2 PbCl4 ) nanocrystals (NCs) through high-pressure processing. A remarkable 5 times PIE was achieved at a mild pressure of 0.4 GPa, which was highly associated with the enhanced radiative recombination of self-trapped excitons. Of particular importance is the retention of the 1.6 times emission of dense (PEA)2 PbCl4 NCs upon the complete release of pressure, accompanied by a color change from "warm" (4403 K) to "cold" white light with 14295 K. The irreversible pressure-induced structural amorphization, which facilitates the remaining local distortion of inorganic Pb-Cl octahedra with respect to the steric hindrance of organic PEA+ cations, should be greatly responsible for the quenched high-efficiency photoluminescence.

20.
Small ; 16(49): e2005035, 2020 12.
Article in English | MEDLINE | ID: mdl-33169482

ABSTRACT

The rational modulation of the nontraditional intrinsic luminescence (NTIL) of nonconventional luminophores remains difficult, on account of the limited understanding on the structure-property relationships and emission mechanisms. Herein, the effective modulation of NTIL is demonstrated based on a group of nonaromatic anhydrides and imides. Mutual bridging of isolated subgroups effectively promotes intramolecular through-space conjugation (TSC), leading to red-shifted emission, enhanced efficiency, and prolonged persistent room-temperature phosphorescence (p-RTP). The substitution of heteroatoms from oxygen to nitrogen drastically changes the TSC and enhances intermolecular interactions, resulting in enhanced emission efficiency. In addition, upon freezing, compression, or embedding into polymer matrices, the emission intensity and color remain well regulated. These results shed new light on the rational modulation of the NTIL and p-RTP of nonconventional luminophores.

SELECTION OF CITATIONS
SEARCH DETAIL
...