Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(28): 33633-33642, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37399534

ABSTRACT

Formate, as an important chemical raw material, is considered to be one of the most promising products for industrialization among CO2 electroreduction reaction (CO2RR) products, but it still suffers from poor selectivity and a low formation rate at a high current density on account of the competitory hydrogen evolution reaction. Herein, the heterogeneous nanostructure was constructed by anchoring In2O3 nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT)-modified carbon black (In2O3/PC), in which the PEDOT polymer interface layer could immobilize In2O3 nanoparticles and obtain a notable reduction in electron transfer resistance among the In2O3 particles, showing a 27% increase in the total electron transfer rate. The optimized In2O3/PC with rich heterogeneous interfaces selectively reduced CO2 to formate with a high FE of 95.4% and a current density of 251.4 mA cm-2 under -1.18 V vs RHE. Also, the formate production rate for In2O3/PC was up to 7025.1 µmol h-1 cm-2, surpassing most previously reported CO2RR catalysts. The in situ XRD results revealed that In2O3 particles were reduced to metallic indium (In) as catalytic active sites during CO2RR. DFT calculations verified that a strong interface interaction between In sites and PC induced electron transfer from In sites to PC, which could optimize the charge distribution of active sites, accelerate electron transfer, and elevate the p-band center of In sites toward the Fermi level, thereby lowering the adsorption energy of *OCHO intermediates for CO2 conversion to formate.

2.
Front Bioeng Biotechnol ; 10: 909591, 2022.
Article in English | MEDLINE | ID: mdl-36032720

ABSTRACT

Inflammatory bowel disease (IBD) is a complex, chronic intestinal inflammatory disorder that primarily includes Crohn's disease (CD) and ulcerative colitis (UC). Although traditional antibiotics and immunosuppressants are known as the most effective and commonly used treatments, some limitations may be expected, such as limited efficacy in a small number of patients and gut flora disruption. A great many research studies have been done with respect to the etiology of IBD, while the composition of the gut microbiota is suggested as one of the most influential factors. Along with the development of synthetic biology and the continuing clarification of IBD etiology, broader prospects for novel approaches to IBD therapy could be obtained. This study presents an overview of the currently existing treatment options and possible therapeutic targets at the preclinical stage with respect to microbial synthesis technology in biological therapy. This study is highly correlated to the following topics: microbiota-derived metabolites, microRNAs, cell therapy, calreticulin, live biotherapeutic products (LBP), fecal microbiota transplantation (FMT), bacteriophages, engineered bacteria, and their functional secreted synthetic products for IBD medical implementation. Considering microorganisms as the main therapeutic component, as a result, the related clinical trial stability, effectiveness, and safety analysis may be the major challenges for upcoming research. This article strives to provide pharmaceutical researchers and developers with the most up-to-date information for adjuvant medicinal therapies based on synthetic biology.

3.
J Colloid Interface Sci ; 602: 799-809, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34171746

ABSTRACT

The electrochemical synthesis of hydrogen peroxide (H2O2) from two-electron oxygen reduction reaction (2e- ORR) is a promising alternative for producing chemicals on demand, but its widespread application is still hampered by the low efficiency. Here, we successfully prepared a boron and nitrogen co-doped porous carbon (B/NC) aerogel with a tunable B, N co-doped configuration by the gelation of PVA-graphene, borax and PANI, followed by pyrolysis. Due to a hierarchical porous structure and optimized B, N co-doping, B/NC aerogel showed an excellent electrocatalytic performance for H2O2 production in alkaline solution with a high H2O2 selectivity (94.16%) at positive applied potential (0.6 V vs. RHE), superior than most of the other reported electrocatalysts. Density functional theory (DFT) calculations reveal that the hexagonal boron nitride (hBN) coupled with neighboring pyridinic-N species act as the active sites to lower free energy barrier for formation of HOO* intermediate, thus facilitating H2O2 production. Practically, B 2p electron plays an important role for the adsorption of HOO* intermediates. B and Nco-doping into carbon materials provides an effective and facile method to reasonably construct carbon-based catalysts for electroreduction of O2 to H2O2.

4.
ACS Appl Mater Interfaces ; 10(19): 16436-16448, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29613758

ABSTRACT

Developing low-cost and highly active multifunctional electrocatalysts to replace noble metal catalysts is crucial for the commercialization of future clean energy technology. Herein, homogeneous Co9S8 nanoparticles anchored on nitrogen and sulfur co-doped porous carbon nanomaterials (CoS@NSCs) are fabricated by pyrolysis of natural soybean treated with cobalt nitrate. The unique porous structures of the soybean are utilized to provide space for the oxidation and complexation reactions for cobalt compounds, thus leading to in situ generation of homogenously dispersed cobalt sulfide nanoparticles that anchored on the N,S co-doped carbon framework. Because of the coupling effect of cobalt sulfide and doping heteroatoms, CoS@NSC-800 not only displays excellent electrocatalytic performances with low overpotential and high current density toward both oxygen reduction reaction and oxygen evolution reaction comparable to the commercial Pt/C catalyst and IrO2 catalyst, but also might be a promising candidate for high-performance supercapacitors. The method for the preparation of the multifunctional hybrids is simple but effective for the formation of uniformly distributed metal sulfide nanoparticles anchored on carbon materials, therefore providing a new perspective for the design and synthesis of multifunctional electrocatalysts for electrochemical energy conversion and storage at a large scale.

5.
Sci Bull (Beijing) ; 63(10): 621-628, 2018 May 30.
Article in English | MEDLINE | ID: mdl-36658882

ABSTRACT

Designing and fabricating cheap and active bifunctional materials is crucial for the development of renewable energy technologies. In this article, three-dimensional nitrogen-doped porous carbon materials (NDPC-X, in which X represents the pyrolysis temperature) were fabricated by simultaneous carbonization and activation of polypyrrole-coated paper towel protected by a silica layer followed by acid etching. The material had a high specific surface area (1,123.40 m2/g). The as-obtained NDPC-900 displayed outstanding activity as a catalyst for the oxygen reduction reaction (ORR) as well as an electrode with a high specific capacitance in a supercapacitor in an alkaline medium. The NDPC-900 catalyst for the ORR exhibited a more positive reduction peak potential of -0.068 V (vs. Hg|HgCl2) than that of Pt/C (-0.121 V), as well as better cycling stability and stronger methanol tolerance. Moreover, the NDPC-900 had a high specific capacitance of 379.50 F/g at a current density of 1 A/g, with a retention rate of 94.5% after 10,000 cycles in 6 mol/L KOH electrolyte when used as an electrode in a supercapacitor. All these results were attributed to the effect of a large surface area, which provided electrochemically active sites. This work introduces an effective way to use biomass-derived materials for the synthesis of promising bifunctional carbon material for electrochemical energy conversion and storage devices.

6.
Small ; 13(40)2017 10.
Article in English | MEDLINE | ID: mdl-28845917

ABSTRACT

Whelk-like polypyrrole (PPy) arrays film is successfully prepared by electropolymerization of pyrrole in the presence of low-surface-energy tetraethylammonium perfluorooctanesulfonate (TEAPFOS) as dopant. The underwater wettability of PPy whelk-like arrays can be successfully tuned by electrical doping/dedoping of PFOS ions. Interestingly, CCl4 droplets with microliter-size as a representative sample are gathered together to form a larger droplet underwater at the potential of +0.8 V (vs Ag/AgCl), because PPy is in its PFOS-doped states. Note that CCl4 droplet can climb uphill successfully on the inclined whelk-like arrays PPy film under the applied potential of -1.0 V (vs Ag/AgCl), which may be attributed to wettability gradient derived from different oxidation states of PPy induced by electrochemical potential. These results may provide a simple strategy for on-demand manipulation of organic droplets underwater at low voltage.

SELECTION OF CITATIONS
SEARCH DETAIL
...