Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.707
Filter
1.
J Med Chem ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822802

ABSTRACT

The concept of ferroptosis inhibition has gained growing recognition as a promising therapeutic strategy for addressing a wide range of diseases. Here, we present the discovery of four series of ortho-aminophenol derivatives as potential ferroptosis inhibitors beginning with the endogenous substance 3-hydroxyanthranilic acid (3-HA) by employing quantum chemistry techniques, in vitro and in vivo assays. Our findings reveal that these ortho-aminophenol derivatives exhibit unique intra-H bond interactions, compelling ortho-amines to achieve enhanced alignment with the aromatic π-system, thereby expanding their activity. Notably, compounds from all four series display remarkable activity against RSL3-induced ferroptosis, showcasing an activity 100 times more than that of 3-HA. Furthermore, these compounds also demonstrate robust in vivo efficacy in protecting mice from kidney ischemia-reperfusion injury and acetaminophen-induced hepatotoxicity. In summary, we provide four distinct series of active scaffolds that significantly expand the chemical space of ferroptosis inhibitors, serving as valuable insights for future structural modifications.

2.
Org Biomol Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832762

ABSTRACT

Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 µM and 12.12 ± 0.95 µM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.

3.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831379

ABSTRACT

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Female , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Animals , Disease Progression , Signal Transduction , Mice , Transcriptional Activation , Gene Expression Regulation, Neoplastic , Mice, Nude , Fibronectins
4.
Stroke ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847098

ABSTRACT

BACKGROUND: It is uncertain whether antiplatelets or anticoagulants are more effective in preventing early recurrent stroke in patients with cervical artery dissection. Following the publication of the observational Antithrombotic for STOP-CAD (Stroke Prevention in Cervical Artery Dissection) study, which has more than doubled available data, we performed an updated systematic review and meta-analysis comparing antiplatelets versus anticoagulation in cervical artery dissection. METHODS: The systematic review was registered in PROSPERO (CRD42023468063). We searched 5 databases using a combination of keywords that encompass different antiplatelets and anticoagulants, as well as cervical artery dissection. We included relevant randomized trials and included observational studies of dissection unrelated to major trauma. Where studies were sufficiently similar, we performed meta-analyses for efficacy (ischemic stroke) and safety (major hemorrhage, symptomatic intracranial hemorrhage, and death) outcomes using relative risks. RESULTS: We identified 11 studies (2 randomized trials and 9 observational studies) that met the inclusion criteria. These included 5039 patients (30% [1512] treated with anticoagulation and 70% [3527]) treated with antiplatelets]. In meta-analysis, anticoagulation was associated with a lower ischemic stroke risk (relative risk, 0.63 [95% CI, 0.43 to 0.94]; P=0.02; I2=0%) but higher major bleeding risk (relative risk, 2.25 [95% CI, 1.07 to 4.72]; P=0.03, I2=0%). The risks of death and symptomatic intracranial hemorrhage were similar between the 2 treatments. Effect sizes were larger in randomized trials. There are insufficient data on the efficacy and safety of dual antiplatelet therapy or direct oral anticoagulants. CONCLUSIONS: In this study of patients with cervical artery dissection, anticoagulation was superior to antiplatelet therapy in reducing ischemic stroke but carried a higher major bleeding risk. This argues for an individualized therapeutic approach incorporating the net clinical benefit of ischemic stroke reduction and bleeding risks. Large randomized clinical trials are required to clarify optimal antithrombotic strategies for management of cervical artery dissection.

5.
Parasit Vectors ; 17(1): 210, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725025

ABSTRACT

BACKGROUND: Toxocara canis is considered one of the most neglected parasitic zoonoses and threatens the health of millions of people worldwide with a predilection for pediatric and adolescent populations in impoverished communities. Exploring the invasion and developmental mechanisms associated with T. canis infection in its definitive canine hosts will help to better control zoonotic toxocariasis. METHODS: Proteomic changes in samples from the upper lobe of the left lung of Beagle puppies were systematically analyzed by quantitative proteomic technology of data-independent acquisition (DIA) at 96 h post-infection (hpi) with T. canis. Proteins with P-values < 0.05 and fold change > 1.5 or < 0.67 were considered proteins with differential abundance (PDAs). RESULTS: A total of 28 downregulated PDAs and 407 upregulated PDAs were identified at 96 hpi, including RhoC, TM4SFs and LPCAT1, which could be associated with the maintenance and repair of lung homeostasis. GO annotation and KEGG pathway enrichment analyses of all identified proteins and PDAs revealed that many lung proteins have correlation to signal transduction, lipid metabolism and immune system. CONCLUSIONS: The present study revealed lung proteomic alterations in Beagle dogs at the lung migration stage of T. canis infection and identified many PDAs of Beagle dog lung, which may play important roles in the pathogenesis of toxocariasis, warranting further experimental validation.


Subject(s)
Dog Diseases , Lung , Proteomics , Toxocara canis , Toxocariasis , Animals , Dogs , Toxocariasis/parasitology , Lung/parasitology , Dog Diseases/parasitology , Proteome
6.
BMC Public Health ; 24(1): 1246, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711104

ABSTRACT

BACKGROUND: Muscle mass loss is an age-related process that can be exacerbated by lifestyle, environmental and other factors, but can be mitigated by good sleep. The objective of this study was to investigate the correlation between varying time lags of sleep duration and the decline in muscle mass among individuals aged 60 years or older by using real-world health monitoring data obtained from wearable devices and smart home health monitoring devices. METHODS: This study included 86,037 observations from 2,869 participants in the Mobile Support System database. Missing data were supplemented by multiple imputation. The investigation utilized generalized estimating equations and restricted cubic spline curve to examine the relationship between sleep duration and low muscle mass. Various lag structures, including 0, 1, 2, 0-1, 0-2, and 1-2 months, were fitted, and the interaction effect of observation time with sleep duration was estimated for each lag structure. Additionally, subgroup analyses were conducted. The models were adjusted for various covariates, including gender, age, body mass index, footsteps, smoking status, drinking status, marital status, number of chronic diseases, number of medications, diabetes mellitus, hyperlipidemia, coronary artery disease, respiratory disease, and musculoskeletal disease and an interaction term between time and sleep duration. RESULTS: The results of the generalized estimating equation showed a significant correlation (p < 0.001) between sleep duration of 8 h or more and low muscle mass in older adults, using 6-7 h of sleep as a reference. This effect was seen over time and prolonged sleep accumulated over multiple months had a greater effect on muscle mass loss than a single month. The effect of long sleep duration on muscle mass loss was significantly greater in females than in males and greater in the over-75 than in the under-75 age group. Restricted cubic spline plots showed a non-linear relationship between sleep duration and low muscle mass (p < 0.001). CONCLUSIONS: This study found an association between sustained nighttime sleep of more than eight hours and decreased muscle mass in older adults, especially older women.


Subject(s)
Independent Living , Sleep , Humans , Male , Female , Aged , Middle Aged , China/epidemiology , Sleep/physiology , Time Factors , Sarcopenia/epidemiology , Aged, 80 and over , Muscle, Skeletal/physiology , East Asian People
7.
BMC Public Health ; 24(1): 1401, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797861

ABSTRACT

BACKGROUND: The vaccination status of post-stroke patients, who are at high risk of severe outcomes from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a significant concern, yet it remains unclear. We aimed to explore the vaccination status, factors associated with vaccine hesitancy, and adverse effects after vaccination among post-stroke patients. METHODS: This multi-center observational study enrolled hospitalized post-stroke patients from six Chinese hospitals (Oct 1, 2020 - Mar 31, 2021), examining vaccine uptake and self-reported reasons for vaccine hesitancy, utilizing logistic regression to investigate risk factors for vaccine hesitancy, and recording any adverse reactions post-vaccination. RESULTS: Of the total 710 post-stroke patients included in the study, 430 (60.6%) had completed the recommended full-3 dose SARS-CoV-2 vaccination, with 176 (24.8%) remaining unvaccinated. The most common reasons for vaccine hesitancy were concerns about vaccine side effects (41.5%) and impaired mobility (33.9%). Logistic regression identified advanced age (aOR = 1.97, 95%CI: 1.36-2.85, P = 0.001), lower Barthel Index score (aOR = 0.88, 95%CI: 0.82-0.93, P = 0.018), higher Modified Rankin Scale score (aOR = 1.85, 95%CI: 1.32-2.56, P = 0.004), and poorer usual activity level of EuroQol 5-Dimension (aOR = 2.82, 95%CI: 1.51-5.28, P = 0.001) as independent risk factors for vaccine hesitancy. Approximately 14.8% reported minor adverse reactions, mainly pain at the injection site. CONCLUSION: We found that post-stroke patients have insufficient SARS-CoV-2 vaccination rates, with key risk factors for vaccine hesitancy including concerns about side effects, advanced age, and functional impairments. No severe adverse reactions were observed among the vaccinated population.


Subject(s)
COVID-19 Vaccines , COVID-19 , Stroke , Vaccination Hesitancy , Humans , Male , Female , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Middle Aged , Cross-Sectional Studies , Aged , COVID-19/prevention & control , COVID-19/psychology , Vaccination Hesitancy/psychology , Vaccination Hesitancy/statistics & numerical data , Stroke/psychology , China , Risk Factors , SARS-CoV-2
8.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
9.
J Microbiol Biotechnol ; 34(6): 1-10, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38755002

ABSTRACT

This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxideGrapheneOxide/Chitosan/ß-Glycerophosphate (ZnO-GO/CS/ß-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/ß-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/ß-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/ß-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/ß-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.

10.
Eur Radiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760508

ABSTRACT

OBJECTIVES: To investigate the value of extracellular volume (ECV) fraction and fat fraction (FF) derived from dual- energy CT (DECT) for predicting postpancreatectomy acute pancreatitis (PPAP) after pancreatoduodenectomy (PD). METHODS: This retrospective study included patients who underwent DECT and PD between April 2022 and September 2022. PPAP was determined according to the International Study Group for Pancreatic Surgery (ISGPS) definition. Iodine concentration (IC) and FF of the pancreatic parenchyma were measured on preoperative DECT. The ECV fraction was calculated from iodine map images of the equilibrium phase. The independent predictors for PPAP were assessed by univariate and multivariable logistic regression analysis and receiver operating characteristic (ROC) curve analysis. RESULTS: Sixty-nine patients were retrospectively enrolled (median age, 60 years; interquartile range, 55-70 years; 47 men). Of these, nine patients (13.0%) developed PPAP. These patients had lower portal venous phase IC, equilibrium phase IC, FF, and ECV fraction, and higher pancreatic parenchymal-to-portal venous phase IC ratio and pancreatic parenchymal-to-equilibrium phase IC ratio, compared with patients without PPAP. After multivariable analysis, ECV fraction was independently associated with PPAP (odd ratio [OR], 0.87; 95% confidence interval [CI]: 0.79, 0.96; p < 0.001), with an area under the curve (AUC) of 0.839 (sensitivity 100.0%, specificity 58.3%). CONCLUSIONS: A lower ECV fraction is independently associated with the occurrence of PPAP after PD. ECV fraction may serve as a potential predictor for PPAP after PD. CLINICAL RELEVANCE STATEMENT: DECT-derived ECV fraction of pancreatic parenchyma is a promising biomarker for surgeons to preoperatively identify patients with higher risk for postpancreatectomy acute pancreatitis after PD and offer selective perioperative management. KEY POINTS: PPAP is a complication of pancreatic surgery, early identification of higher-risk patients allows for risk mitigation. Lower DECT-derived ECV fraction was independently associated with the occurrence of PPAP after PD. DECT aids in preoperative PAPP risk stratification, allowing for appropriate treatment to minimize complications.

11.
Angew Chem Int Ed Engl ; : e202405344, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753429

ABSTRACT

Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride-derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking via a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated, and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.

12.
BMC Pregnancy Childbirth ; 24(1): 375, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760653

ABSTRACT

BACKGROUND: Limited evidence exists regarding the association between gestational diabetes mellitus (GDM) and elevated levels of thyroid-stimulating hormone (TSH) in newborns. Therefore, this study aimed to investigate the potential risk of elevated TSH levels in infants exposed to maternal GDM, considering the type and number of abnormal values obtained from the 75-gram oral glucose tolerance test (OGTT). METHODS: A population-based, prospective birth cohort study was conducted in Wuhan, China. The study included women who underwent GDM screening using a 75-g OGTT. Neonatal TSH levels were measured via a time-resolved immunofluorescence assay. We estimated and stratified the overall risk (adjusted Risk Ratio [RR]) of elevated TSH levels (defined as TSH > 10 mIU/L or > 20 mIU/L) in offspring based on the type and number of abnormal OGTT values. RESULTS: Out of 15,236 eligible mother-offspring pairs, 11.5% (1,753) of mothers were diagnosed with GDM. Offspring born to women diagnosed with GDM demonstrated a statistically significant elevation in TSH levels when compared to offspring of non-GDM mothers, with a mean difference of 0.20 [95% CI: 0.04-0.36]. The incidence of elevated TSH levels (TSH > 10 mIU/L) in offspring of non-GDM women was 6.3 per 1,000 live births. Newborns exposed to mothers with three abnormal OGTT values displayed an almost five-fold increased risk of elevated TSH levels (adjusted RR 4.77 [95% CI 1.64-13.96]). Maternal fasting blood glucose was independently and positively correlated with neonatal TSH levels and elevated TSH status (TSH > 20 mIU/L). CONCLUSIONS: For newborns of women with GDM, personalized risk assessment for elevated TSH levels can be predicated on the type and number of abnormal OGTT values. Furthermore, fasting blood glucose emerges as a critical predictive marker for elevated neonatal TSH status.


Subject(s)
Diabetes, Gestational , Glucose Tolerance Test , Thyrotropin , Humans , Female , Thyrotropin/blood , Pregnancy , Diabetes, Gestational/blood , Infant, Newborn , Adult , China/epidemiology , Prospective Studies , Birth Cohort , Male , Cohort Studies
13.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755662

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Actinobacillus pleuropneumoniae/drug effects , Flavanones/therapeutic use , Flavanones/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , NF-E2-Related Factor 2/metabolism , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Mice , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Female , Membrane Proteins , Heme Oxygenase-1
14.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691444

ABSTRACT

Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.


Subject(s)
Arachis , Fruit , Microbiota , Plant Diseases , Plant Roots , RNA, Ribosomal, 16S , Soil Microbiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Arachis/microbiology , Aspergillus/genetics , Aspergillus/isolation & purification , Bacillus/genetics , Bacillus/isolation & purification , Plant Growth Regulators/metabolism , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
15.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
16.
Pathol Res Pract ; 259: 155359, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38810376

ABSTRACT

PURPOSE: Driver mutations inform lung adenocarcinoma (LUAD) targeted therapy. Association of histopathological attributes and molecular profiles facilitates clinically viable testing platforms. We assessed correlations between LUAD clinicopathological features, mutational landscapes, and two grading systems among Chinese cases. METHODS: 79 Chinese LUAD patients undergoing resection were subjected to targeted sequencing. 68 were invasive nonmucinous adenocarcinoma (INMA), graded via: predominant histologic pattern-based grading system (P-GS) or novel IASLC grading system (I-GS). Driver mutation distributions were appraised and correlated with clinical and pathological data. RESULTS: Compared to INMA, non-INMA exhibited smaller, well-differentiated tumors with higher mucin content. INMA grade correlated with size, lymph invasion (P-GS), and driver/EGFR mutations. Mutational spectra varied markedly between grades, with EGFR p.L858R and exon 19 deletion mutations predominating in lower grades; while high-grade P-GS tumors often harbored EGFR copy number variants and complex alterations alongside wild-type cases. I-GS upgrade of P-GS grade 2 to grade 3 was underpinned by ≥20 % high-grade regions bearing p.L858R or ALK fusions. Both systems defined tumors of distinctive phenotypic attributes and molecular genotypes. CONCLUSIONS: INMA represent larger, mucin-poor, molecularly heterogeneous LUAD with divergent grade-specific mutation profiles. Stronger predictor of clinicopathological attributes and driver mutations, P-GS stratification offers greater accuracy for molecular testing. A small panel encompassing EGFR and ALK captures the majority of P-GS grade 1/2 mutations whereas expanded panels are optimal for grade 3.

17.
Article in English | MEDLINE | ID: mdl-38811457

ABSTRACT

To investigate air pollution in the kerbside environment and its associated human health risks, a study was conducted in Lanzhou during December 2018, as well as in April, June, and September 2019. The research aimed to characterize the composition of PM10 and PM2.5, including elements, ions, and carbonaceous components, at both rooftop and kerbside locations. Additionally, source apportionment and health risk assessment were conducted. The results showed that the average mass concentrations of PM10 on the rooftop were 176.01 ± 83.23 µg/m3, and for PM2.5, it was 94.07 ± 64.89 µg/m3. The PM10 and PM2.5 levels at the kerbside are 2.21 times and 1.79 times, respectively, greater than those on the rooftop. Moreover, the concentrations of elements, ions, and carbonaceous components in kerbside PM were higher than those at the rooftop location. Chemical mass closure analysis identified various sources, including organic matter, mineral dust, secondary ions, other ions, elements, and other components. In comparison to rooftop particulate matter (PM), mineral dust makes a more substantial contribution to kerbside PM. Secondary ions show an opposite trend, making a greater contribution to rooftop PM. The contribution of organic components within PM of the same particle size remains relatively consistent. The outcome of the health risk assessment indicates that Co, Cd, and As in PM within the kerbside and rooftop environments do not pose a notable carcinogenic risk. However, Al and Mn do present specific non-carcinogenic risks, particularly in the kerbside environment. Furthermore, children experience elevated non-carcinogenic risk compared to adults. These findings can serve as a scientific foundation for formulating policies within the local health department.

18.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2385-2392, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812139

ABSTRACT

This study aims to investigate the mechanism of total saponins of Paridis Rhizoma in inducing the ferroptosis of MCF-7 cells and provide a theoretical basis for the clinical treatment of breast cancer with total saponins of Paridis Rhizoma. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the effects of different concentrations of total saponins of Paridis Rhizoma on the proliferation of MCF-7 cells. A phase contrast inverted microscope was used to observe the morphological changes of MCF-7 cells. The colony formation assay was employed to test the colony formation of MCF-7 cells. The lactate dehydrogenase(LDH) release test was conducted to determine the cell membrane integrity of MCF-7 cells. The cell scratch assay was employed to examine the migration of MCF-7 cells. After that, the level of reactive oxygen species(ROS) in MCF-7 cells was observed by an inverted fluorescence microscope, and the content of Fe~(2+) in MCF-7 cells was detected by the corresponding kit. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of MCF-7 cells. Western blot was employed to determine the expression of ferroptosis-related proteins, such as p53, solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long-chain family member 4(ACSL4), and transferrin receptor protein 1(TFR1) in MCF-7 cells. The results showed that 1.5, 3, 4.5, 6, 7.5, and 9 µg·mL~(-1) total saponins of Paridis Rhizoma significantly inhibited the proliferation of MCF-7 cells, with the IC_(50) of 4.12 µg·mL~(-1). Total saponins of Paridis Rhizoma significantly damaged the morphology of MCF-7 cells, leading to the formation of vacuoles and the gradual shrinkage and detachment of cells. Meanwhile, total saponins of Paridis Rhizoma inhibited the colony formation of MCF-7 cells, destroyed the cell membrane(leading to the release of LDH), and shortened the migration distance of MCF-7 cells. Total saponins of Paridis Rhizoma treatment significantly increased the content of ROS, induced oxidative damage, and led to the accumulation of Fe~(2+) in MCF-7 cells. Furthermore, total saponins of Paridis Rhizoma changed the mitochondrial structure, increased the mitochondrial membrane density, led to the decrease or even disappear of ridges, promoted the expression of p53 protein, down-regulated the expression of SLC7A11 and GPX4, and up-regulated the expression of ACSL4 and TFR1. In summary, total saponins of Paridis Rhizoma can significantly inhibit the proliferation and migration of MCF-7 cells and destroy the cell structure by inducing ferroptosis.


Subject(s)
Breast Neoplasms , Ferroptosis , Reactive Oxygen Species , Rhizome , Saponins , Humans , Saponins/pharmacology , Saponins/chemistry , Ferroptosis/drug effects , MCF-7 Cells , Rhizome/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Reactive Oxygen Species/metabolism , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Proliferation/drug effects , Primulaceae/chemistry
19.
Nat Genet ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744974

ABSTRACT

Polycomb repressive complex 2 (PRC2) interacts with RNA in cells, but there is no consensus on how RNA regulates PRC2 canonical functions, including chromatin modification and the maintenance of transcription programs in lineage-committed cells. We assayed two separation-of-function mutants of the PRC2 catalytic subunit EZH2, defective in RNA binding but functional in methyltransferase activity. We find that part of the RNA-binding surface of EZH2 is required for chromatin modification, yet this activity is independent of RNA. Mechanistically, the RNA-binding surface within EZH2 is required for chromatin modification in vitro and in cells, through interactions with nucleosomal DNA. Contrarily, an RNA-binding-defective mutant exhibited normal chromatin modification activity in vitro and in lineage-committed cells, accompanied by normal gene repression activity. Collectively, we show that part of the RNA-binding surface of EZH2, rather than the RNA-binding activity per se, is required for the histone methylation in vitro and in cells, through interactions with the substrate nucleosome.

20.
World J Hepatol ; 16(5): 776-783, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818289

ABSTRACT

Functional constipation (FC) is a common disorder that is characterized by difficult stool passage, infrequent bowel movement, or both. FC is highly prevalent, recurs often, accompanies severe diseases, and affects quality of life; therefore, safe and effective therapy with long-term benefits is urgently needed. Microbiota treatment has potential value for FC treatment. Microbiota treatments include modulators such as probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). Some probiotics and prebiotics have been adopted, and the efficacy of other microbiota modulators is being explored. FMT is considered an emerging field because of its curative effects; nevertheless, substantial work must be performed before clinical implementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...