Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Cell Physiol ; : e31363, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982866

ABSTRACT

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.

2.
MedComm (2020) ; 5(3): e475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463393

ABSTRACT

Senescence-associated microRNAs (SA-miRNAs) are important molecules for aging regulation. While many aging-promoting SA-miRNAs have been identified, confirmed aging-suppressive SA-miRNAs are rare, that impeded our full understanding on aging regulation. In this study, we verified that miR-708 expression is decreased in senescent cells and aged tissues and revealed that miR-708 overexpression can alleviate cellular senescence and aging performance. About the molecular cascade carrying the aging suppressive action of miR-708, we unraveled that miR-708 directly targets the 3'UTR of the disabled 2 (Dab2) gene and inhibits the expression of DAB2. Interestingly, miR-708-caused DAB2 downregulation blocks the aberrant mammalian target of rapamycin complex 1 (mTORC1) activation, a driving metabolic event for senescence progression, and restores the impaired autophagy, a downstream event of aberrant mTORC1 activation. We also found that AMP-activated protein kinase (AMPK) activation can upregulate miR-708 via the elevation of DICER expression, and miR-708 inhibitor is able to blunt the antiaging effect of AMPK. In summary, this study characterized miR-708 as an aging-suppressive SA-miRNA for the first time and uncovered a new signaling cascade, in which miR-708 links the DAB2/mTOR axis and AMPK/DICER axis together. These findings not only demonstrate the potential role of miR-708 in aging regulation, but also expand the signaling network connecting AMPK and mTORC1.

3.
J Transl Med ; 22(1): 50, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216965

ABSTRACT

With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Neoplasms , Humans , Aged , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular Diseases/epidemiology , Cardio-Oncology , Medical Oncology , Neoplasms/genetics
4.
Nat Cancer ; 4(8): 1176-1192, 2023 08.
Article in English | MEDLINE | ID: mdl-37537298

ABSTRACT

Detecting and targeting precancerous cells in noncancerous tissues is a major challenge for cancer prevention. Massive stabilization of mutant p53 (mutp53) proteins is a cancer-specific event that could potentially mark precancerous cells, yet in vivo protein-level mutp53 reporters are lacking. Here we developed two transgenic protein-level mutp53 reporters, p53R172H-Akaluc and p53-mCherry, that faithfully mimic the dynamics and function of mutp53 proteins in vivo. Using these reporters, we identified and traced rare precancerous clones in deep noncancerous tissues in various cancer models. In classic mutp53-driven thymic lymphoma models, we found that precancerous clones exhibit broad chromosome number variations, upregulate precancerous stage-specific genes such as Ybx3 and enhance amino acid transport and metabolism. Inhibiting amino acid transporters downstream of Ybx3 at the early but not late stage effectively suppresses tumorigenesis and prolongs survival. Together, these protein-level mutp53 reporters reveal undercharacterized features and vulnerabilities of precancerous cells during early tumorigenesis, paving the way for precision cancer prevention.


Subject(s)
Precancerous Conditions , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Carcinogenesis/genetics , Clone Cells/metabolism , Precancerous Conditions/genetics
5.
Oxid Med Cell Longev ; 2023: 5885203, 2023.
Article in English | MEDLINE | ID: mdl-36846720

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is one of the most hazardous tumors in the urinary system. The regulation of oxygen consumption in renal clear cell carcinoma is a consequence of adaptive reprogramming of oxidative metabolism in tumor cells. APPL1 is a signaling adaptor involved in cell survival, oxidative stress, inflammation, and energy metabolism. However, the correlation of APPL1 with regulatory T cell (Treg) infiltration and prognostic value in KIRC remain unclear. In this study, we comprehensively predicted the potential function and prognostic value of APPL1 in KIRC. For KIRC patients, relatively low expression of APPL1 was associated with high degree of metastasis, pathological stage, and shorter overall time or poor prognosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that low expression of APPL1 may be adapted to the malignant progression of tumors via affecting oxygen-consuming metabolism. In addition, the expression level of APPL1 was negatively correlated with Treg cell infiltration and chemotherapy sensitivity, which indicated that APPL1 may regulate the tumor immune infiltration and chemotherapy resistance by decrease oxygen-consuming metabolic process in KIRC. Therefore, APPL1 may become one of the important prognostic factors, and it may serve as a candidate prognostic biomarker in KIRC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , T-Lymphocytes, Regulatory , Prognosis , Biomarkers , Adaptor Proteins, Signal Transducing
6.
IBRO Neurosci Rep ; 13: 87-95, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35847179

ABSTRACT

Hemorrhagic transformation (HT) has been reported to be associated with a poor prognosis after acute ischemic stroke. Blood-brain barrier (BBB) damage is considered as the major pathophysiologic mechanism of HT. Our aim was to investigate the role of acute iron overload in BBB damage and HT after transient focal ischemia in rats with hyperglycemia. Transient middle cerebral artery occlusion (MCAO) was induced in rats with hyperglycemia. Animals were assigned to four groups: Sham, Vehicle, Iron overload and Iron chelator treatment groups. Brain samples were collected at 24 h after surgery to quantify the amount of hemorrhage, determine extravasation of Evans blue and detect the levels of following proteins: ferritin, matrix metalloproteinase-9 (MMP-9), zonula occludens-1 (ZO-1), Occludin and Claudin-5 by western blot analysis and immunohistochemistry. Compared to the Vehicle group, the Iron overload group had a significantly higher amount of hemorrhage and more extravasation of Evans blue. The Iron overload group had lower levels of ZO-1, Occludin and Claudin-5 and higher levels of ferritin and MMP-9 than the Vehicle group. Administering iron chelator reduced the extension of hemorrhage and extravasation of Evans blue, reversed the MCAO-induced reduction of ZO-1, Occludin and Claudin-5 and decreased the levels of ferritin and MMP-9. Our results suggest that acute iron overload aggravates BBB damage and HT after transient ischemia in rats with hyperglycemia, which provides basic evidence for iron overload as a potential factor associated with BBB damage and HT in ischemic stroke patients when accompanied with hyperglycemia.

8.
Front Pharmacol ; 13: 924081, 2022.
Article in English | MEDLINE | ID: mdl-35860029

ABSTRACT

Glutamine is a conditionally essential amino acid involved in energy production and redox homeostasis. Aging is commonly characterized by energy generation reduction and redox homeostasis dysfunction. Various aging-related diseases have been reported to be accompanied by glutamine exhaustion. Glutamine supplementation has been used as a nutritional therapy for patients and the elderly, although the mechanism by which glutamine availability affects aging remains elusive. Here, we show that chronic glutamine deprivation induces senescence in fibroblasts and aging in Drosophila melanogaster, while glutamine supplementation protects against oxidative stress-induced cellular senescence and rescues the D-galactose-prompted progeria phenotype in mice. Intriguingly, we found that long-term glutamine deprivation activates the Akt-mTOR pathway, together with the suppression of autolysosome function. However, the inhibition of the Akt-mTOR pathway effectively rescued the autophagy impairment and cellular senescence caused by glutamine deprivation. Collectively, our study demonstrates a novel interplay between glutamine availability and the aging process. Mechanistically, long-term glutamine deprivation could evoke mammalian target of rapamycin (mTOR) pathway activation and autophagy impairment. These findings provide new insights into the connection between glutamine availability and the aging process.

9.
Cell Rep ; 39(5): 110750, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508129

ABSTRACT

Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor ß (PDGFRß) impairs bone repair. We further show that PDGFRß-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRß/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.


Subject(s)
Hydrogen Sulfide , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Bone Regeneration , Hydrogen , Hydrogen Sulfide/pharmacology , Osteogenesis , Receptor, Platelet-Derived Growth Factor beta/metabolism
10.
Front Immunol ; 13: 796288, 2022.
Article in English | MEDLINE | ID: mdl-35464431

ABSTRACT

It has been noticed in recent years that the unfavorable effects of the gut microbiota could exhaust host vigor and life, yet knowledge and theory are just beginning to be established. Increasing documentation suggests that the microbiota-gut-brain axis not only impacts brain cognition and psychiatric symptoms but also precipitates neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). How the blood-brain barrier (BBB), a machinery protecting the central nervous system (CNS) from the systemic circulation, allows the risky factors derived from the gut to be translocated into the brain seems paradoxical. For the unique anatomical, histological, and immunological properties underpinning its permeable dynamics, the BBB has been regarded as a biomarker associated with neural pathogenesis. The BBB permeability of mice and rats caused by GM dysbiosis raises the question of how the GM and its metabolites change BBB permeability and causes the brain pathophysiology of neuroinflammation and neurodegeneration (NF&ND) and brain aging, a pivotal multidisciplinary field tightly associated with immune and chronic systemic inflammation. If not all, gut microbiota-induced systemic chronic inflammation (GM-SCI) mainly refers to excessive gut inflammation caused by gut mucosal immunity dysregulation, which is often influenced by dietary components and age, is produced at the interface of the intestinal barrier (IB) or exacerbated after IB disruption, initiates various common chronic diseases along its dispersal routes, and eventually impairs BBB integrity to cause NF&ND and brain aging. To illustrate the immune roles of the BBB in pathophysiology affected by inflammatory or "leaky" IB resulting from GM and their metabolites, we reviewed the selected publications, including the role of the BBB as the immune barrier, systemic chronic inflammation and inflammation influences on BBB permeability, NF&ND, and brain aging. To add depth to the bridging role of systemic chronic inflammation, a plausible mechanism indispensable for BBB corruption was highlighted; namely, BBB maintenance cues are affected by inflammatory cytokines, which may help to understand how GM and its metabolites play a major role in NF&ND and aging.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Aging , Alzheimer Disease/pathology , Animals , Brain/metabolism , Gastrointestinal Microbiome/physiology , Inflammation/metabolism , Neuroinflammatory Diseases , Rats
11.
Biochem Pharmacol ; 200: 115045, 2022 06.
Article in English | MEDLINE | ID: mdl-35439535

ABSTRACT

Compounds with senolysis activity are discovered in recent years, featuring by their capacity to specifically eliminate senescent cells in vitro or in vivo. These compounds, referring to as Senolytics, provide a new method for aging counteraction and probably for geriatric disease amelioration. However, their clinical application is unpractical still, mainly because of the safety issue. In fact, the effective dose range even of the most potent senolytic cannot guarantee the safety requirements application for human being. Here, we report a study which investigated the combinational application of one potential senolytic molecule navitoclax, a Bcl-2 inhibitor with several mTOR inhibitors, to assess the influence of this combination on the senolytic outcome. Our results reveal that pan-mTOR inhibitors can reduce the dosage or timespan of navitoclax necessary for reaching IC50 and LT50 in senescent cells, also extend the lifespan of premature-aged Drosophila and mitigate the aging-related phenotype. Our results also confirmed that mTOR inhibitor sensitized senolytic cell death is apoptotic and pan-mTOR inhibitors PP242 and AZD8055 works more effectively than mTORC1 inhibitor Rapamycin. Mechanically, we verified the crucial role of mTORC2 inhibition contributes sensitization by increasing the expression of the pro-apoptotic protein Bim. In summary, this study firstly exposes the sensitization effect of pan-mTOR inhibitors on navitoclax-induced senolytic apoptosis, therefore providing novel evidence to show the advantage of drug combination on setting senotherapy. It also provides an intriguing clue to demonstrate the value of mTORC2 inhibition for apoptotic death of senescent cells.


Subject(s)
MTOR Inhibitors , Senotherapeutics , Aniline Compounds , Apoptosis , Mechanistic Target of Rapamycin Complex 2 , Sulfonamides
12.
Perspect Psychiatr Care ; 58(4): 2577-2584, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35478409

ABSTRACT

PURPOSE: To find the relationship between psychological capital, coping style, and disaster preparedness in public hospital nurses. DESIGN AND METHODS: A cross-sectional study of 515 registered nurses from a public hospital in northeast Sichuan Province, China who were enrolled to complete self-reported questionnaires sent through the WeChat app. RESULTS: Disaster preparedness and psychology capital (r = 0.73, p < 0.01), disaster preparedness and coping style (r = 0.55, p < 0.01), and psychological capital and coping style (r = 0.56, p < 0.01) were positively correlated. Psychological capital (B = 1.81, p < 0.01) and coping style (B = 0.87, p < 0.01) accounted for 50% of disaster preparedness. Coping style partly mediated the effect of psychological capital on disaster preparedness (ab: 0.33, 95% confidence interval [CI]: 0.21-0.45). PRACTICAL IMPLICATIONS: The level of psychological capital of nurses can provide an objective reference for administrators to establish intervention strategies and to promote positive psychological resources among nurses.


Subject(s)
Disasters , Nurses , Humans , Cross-Sectional Studies , Adaptation, Psychological , Surveys and Questionnaires , China
13.
Signal Transduct Target Ther ; 7(1): 66, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35241643

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is indispensable for the anti-aging activity of the sirtuin (SIRT) family enzymes. AMP-activated protein kinase (AMPK) upregulates NAD+ synthesis and SIRT activity in a nicotinamide phosphoribosyltransferase (NAMPT)-dependent manner. However, the molecular mechanisms that affect AMPK-driven NAMPT expression and NAD+/SIRT activation remain unclear. In this study, we tried to identify senescence-associated microRNAs (miRNAs) that negatively regulate the cascade linking AMPK and NAMPT expression. miRNA-screening experiments showed that the expression of miR-146a increased in senescent cells but decreased following AMPK activation. Additionally, miR-146a overexpression weakened the metformin-mediated upregulation of NAMPT expression, NAD+ synthesis, SIRT activity, and senescence protection, whereas treatment with the miR-146a inhibitor reversed this effect. Importantly, these findings were observed both in vitro and in vivo. Mechanistically, miR-146a directly targeted the 3'-UTR of Nampt mRNA to reduce the expression of NAMPT. AMPK activators metformin and 5-aminoimidazole-4-carboxamide (AICAR) hindered miR-146a expression at the transcriptional level by promoting IκB kinase (IKK) phosphorylation to attenuate nuclear factor-kappaB (NF-κB) activity. These findings identified a novel cascade that negatively regulates the NAD+/SIRT pathway by suppressing miR-146a-mediated NAMPT downregulation. Furthermore, our results showed that miR-146a impedes the anti-aging effect of AMPK. This mutual inhibitory relationship between miR-146a and AMPK enriches our understanding of the molecular connections between AMPK and SIRT and provides new insight into miRNA-mediated NAD+/SIRT regulation and an intervention point for the prevention of aging and age-related diseases.


Subject(s)
Metformin , MicroRNAs , Sirtuins , 3' Untranslated Regions , AMP-Activated Protein Kinases/genetics , Metformin/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Sirtuins/genetics
14.
MedComm (2020) ; 2(2): 279-287, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34766147

ABSTRACT

Alveolar epithelial cells (ACEs) gradually senescent as aging, which is one of the main causes of respiratory defense and function decline. Investigating the mechanisms of ACE senescence is important for understanding how the human respiratory system works. NAD+ is reported to reduce during the aging process. Supplementing NAD+ intermediates can activate sirtuin deacylases (SIRT1-SIRT7), which regulates the benefits of exercise and dietary restriction, reduce the level of intracellular oxidative stress, and improve mitochondrial function, thereby reversing cell senescence. We showed that nicotinamide mononucleotide (NMN) could effectively mitigate age-associated physiological decline in the lung of 8-10 months old C57BL/6 mice and bleomycin-induced pulmonary fibrosis in young mice of 6-8 weeks. Besides, the treatment of primary ACEs with NMN can markedly ameliorate cell senescence phenotype in vitro. These findings to improve the respiratory system function and reduce the incidence and mortality from respiratory diseases in the elderly are of great significance.

15.
Cell Mol Life Sci ; 78(23): 7617-7633, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34689235

ABSTRACT

The majority of lncRNAs and a small fraction of mRNAs localize in the cell nucleus to exert their functions. A SIRLOIN RNA motif was previously reported to drive its nuclear localization by the RNA-binding protein hnRNPK. However, the underlying mechanism remains unclear. Here, we report crystal structures of hnRNPK in complex with SIRLOIN, and with the nuclear import receptor (NIR) Impα1, respectively. The protein hnRNPK bound to SIRLOIN with multiple weak interactions, and interacted Impα1 using an independent high-affinity site. Forming a complex with hnRNPK and Impα1 was essential for the nuclear import and stress granule localization of SIRLOIN in semi-permeabilized cells. Nuclear import of SIRLOIN enhanced with increasing NIR concentrations, but its stress granule localization peaked at a low NIR concentration. Collectively, we propose a mechanism of SIRLOIN localization, in which NIRs functioned as drivers/regulators, and hnRNPK as an adaptor.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Nucleotide Motifs/genetics , Phosphoric Monoester Hydrolases/metabolism , Short Interspersed Nucleotide Elements , Stress Granules/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Humans , Nuclear Localization Signals , Phosphoric Monoester Hydrolases/genetics
16.
Eur J Nutr ; 60(8): 4357-4366, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34046701

ABSTRACT

PURPOSE: This study was to evaluate the associations of dietary intake of total and specific phytosterols and risk of esophageal squamous cell carcinoma (ESCC) and to explore their joint effects with PLCE1 rs2274223 polymorphisms. METHODS: A population-based case-control study was conducted in a Chinese rural population and 856 eligible incident ESCC cases and 856 controls were included. A validated food frequency questionnaire was used to collect dietary consumption and PLCE1 rs2274223 polymorphisms were genotyped. Unadjusted and adjusted odds ratios (ORs) with 95% confidence interval (CI) were assessed via logistic regression model. RESULTS: When comparing the highest with lowest intake quartiles, ß-sitosterol, campesterol, stigmasterol, ß-sitostanol, campestanol, and total phytosterols were all associated with a decreased risk of ESCC, with adjusted ORs being 0.32 (95% CI 0.20-0.48), 0.18 (95% CI 0.11-0.27), 0.45 (95% CI 0.29-0.70), 0.13 (95% CI 0.08-0.20), 0.14 (95% CI 0.09-0.22) and 0.28 (95% CI 0.18-0.43), respectively. An exposure-response relationship was also observed for both total and five specific phytosterols (all P for trend < 0.001). In comparison to rs2274223 AA genotype, both GA genotype (OR: 1.47, 95% CI 1.16-1.85) and GG genotype (OR: 2.13, 95% CI 1.20-3.84) were associated with an increased risk of ESCC. However, no interaction was observed between total/specific phytosterols intake and rs2274223 polymorphisms. CONCLUSION: Higher dietary intake of total and five specific phytosterols was associated with a lower risk of ESCC, and the risk of ESCC increased with the increment of rs2274223 G allele. The negative association between phytosterols and ESCC risk was not modified by rs2274223 polymorphisms. Foods or supplements rich in phytosterols are a promising source for chemoprevention of ESCC, and still, clinical trials will be required in any specific case.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Phosphoinositide Phospholipase C , Phytosterols , Case-Control Studies , Eating , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Genetic Predisposition to Disease , Humans , Phosphoinositide Phospholipase C/genetics , Polymorphism, Single Nucleotide
17.
Gerontology ; 67(6): 708-717, 2021.
Article in English | MEDLINE | ID: mdl-33940580

ABSTRACT

Although microphthalmia-associated transcription factor (MITF) has been known for decades as a key regulator for melanocytic differentiation, recent studies expanded its other roles in multiple biological processes. Among these newfound roles, the relationship between MITF and aging is attractive; however, the underlying mechanism remains elusive. Here, we review the documented cues that highlight the implication of MITF in the aging process and particularly discuss the possible mechanisms underlying the participation of MITF in cellular senescence. First, it summarizes the association of MITF with melanocytic senescence, including the roles of MITF in cell cycle regulation, DNA damage repair, oxidative stress response, and the generation of senescence-associated secretory phenotype. Then, it collects the information involving MITF-related senescent changes in nonmelanocytes, such as retinal pigment epithelium cells, osteoclasts, and cardiomyocytes. This review may deepen the understanding of MITF function and be helpful to develop new strategies for improving geriatric health.


Subject(s)
Aging/metabolism , Aging/pathology , Melanocytes , Microphthalmia-Associated Transcription Factor , Cell Differentiation , Cellular Senescence , Humans , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism
18.
J Pharm Pharmacol ; 73(7): 986-995, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33877365

ABSTRACT

OBJECTIVES: To explore the potential molecular mechanism underlying the effect of green tea extract (TE), rich in tea polyphenols (TPs), on improving alcohol-induced liver injury. METHODS: Mice were intragastrically treated with 50% (v/v) alcohol administration (15 ml/kg BW) with or without three doses of TE (50, 120 and 300 mg TPs/kg BW) daily for 4 weeks, and biological changes were tested. KEY FINDINGS: The TE improved the functional and histological situations in the liver of the mice accepted alcohol administration, including enzymes for alcohol metabolism, oxidative stress and lipid accumulation. Interestingly, the TE increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), with the decreasing expression of kelch-like ECH-associated protein 1 (Keap1), indicating the association between the effect of TE with Nrf2-mediated antioxidant signalling. Moreover, the TE restored the activity of autophagy, showing as lifted Beclin-1 expression, LC3B-II/LC3B-I ratio, and decreased p62 expression. Importantly, all these effects were dose-dependent. CONCLUSIONS: These findings provide a new notion for the first time that the TE preventing against alcohol-induced liver injury is closely related to accelerated metabolism of alcohol and relieved oxidative stress, which is associated with Nrf2 signalling activation and autophagy restoration, thus the reduction of lipid accumulation in liver.


Subject(s)
Autophagy/drug effects , Liver Diseases, Alcoholic , NF-E2-Related Factor 2/metabolism , Tea , Animals , Antioxidants/pharmacology , Autophagy-Related Proteins/analysis , Beclin-1/metabolism , Lipid Metabolism/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Mice , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Signal Transduction/drug effects , Treatment Outcome
19.
Drug Resist Updat ; 53: 100720, 2020 12.
Article in English | MEDLINE | ID: mdl-32892147

ABSTRACT

Despite the development of targeted therapy, drug resistance remains a primary hindrance to curative treatment of various cancers. Among several novel approaches to overcome drug resistance, modulating N6-methyladenosine (m6A) RNA modification was found to be an important strategy in various types of cancer cells. Considered as one of the most common epigenetic RNA modifications, m6A regulates multiple biological processes including cellular proliferation, metabolism, and metastasis through modulation of RNA splicing, degradation, and translation, leading to anticancer drug resistance. This regulatory network is orchestrated mainly by several m6A regulators, including "writers", "readers", and "erasers". It is encouraging that several small molecules targeting m6A regulators have shown great potential in overcoming drug resistance in different cancer cell types, two of which entacapone and meclofenamate, are currently undergoing evaluation. However, the m6A modification participates in complex biological processes and its functions are context-dependent, which has challenged the clinical application of targeting the m6A modification in cancer therapy. In this review, we discuss the molecular mechanisms underlying the m6A modification in regulating anticancer drug resistance through modulation of drug-target interaction and drug-mediated cell death signaling. Alteration of the m6A modification interferes with drug efficacy through modulation of the expression of multidrug efflux transporters (e.g., ABCG2, ABCC9, ABCC10), drug metabolizing enzymes (e.g., CYP2C8), and drug targets (e.g., p53 R273 H). Furthermore, alterations of the m6A modification may protect cells from drug-mediated cell death by regulating DNA damage repair (e.g., p53, BRCA1, Pol κ, UBE2B, and ERCC1), downstream adaptive response (e.g., critical regulators of apoptosis, autophagy, pro-survival signaling, and oncogenic bypass signaling), cell stemness, and tumor microenvironment (e.g., ITGA6, ITGB3, and PD-1). We particularly highlight recent advances in therapeutic strategies targeting the m6A modification with the aim to surmount chemoresistance. The comprehensive understanding of the role of the m6A modification integrated with combined therapeutic strategies, should facilitate the development of future therapeutic strategies to circumvent or surmount drug resistance, thus enhancing therapeutic efficacy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , RNA Processing, Post-Transcriptional/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , DNA Damage/drug effects , DNA Repair/drug effects , Disease Models, Animal , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Methylation/drug effects , Neoplasms/genetics , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
20.
Article in English | MEDLINE | ID: mdl-32625169

ABSTRACT

It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Endocrine System/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Pneumonia/metabolism , Animals , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...