Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(49): 20314-20324, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37991983

ABSTRACT

Functionalized crystalline solids based on metal-organic frameworks (MOFs) enable efficient luminescence detection and high proton conductivity, making them crucial in the realms of environmental monitoring and clean energy. Here, two structurally and functionally distinct zinc-based MOFs, [Zn(TTDPa)(bodca)]·H2O (1) and [Zn(TTDPb)(bodca)]·H2O (2), were successfully designed and synthesized using 3,6-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPa) and 2,5-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPb) as ligands, in the presence of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (H2bodca). Both 1 and 2 display a three-dimensional (3D) structure with 5-fold interpenetration, and notably, 2 forms a larger one-dimensional pore measuring 17.16 × 10.81 Å2 in size. Fluorescence experiments demonstrate that 1 and 2 can function as luminescent sensors for nitrofurantoin (NFT) and nitrofurazone (NFZ) with low detection limits, remarkable selectivity, and good recyclability. A comprehensive analysis was conducted to investigate the differing sensing effects of compounds 1 and 2 and to explore potential sensing mechanisms. Additionally, at 328 K and 98% relative humidity, 1 and 2 exhibit proton conductivity values of 2.13 × 10-3 and 4.91 × 10-3 S cm-1, respectively, making them suitable proton-conducting materials. Hence, the integration of luminescent sensing and proton conductivity in monophasic 3D Zn-MOFs holds significant potential for application in intelligent multitasking devices.

2.
Inorg Chem ; 62(10): 4351-4360, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36847208

ABSTRACT

Using enantiomerically pure bidentate and tridentate N-donor ligands (1LR/1LS and 2LR/2LS) to replace two coordinated H2O molecules of Yb(tta)3(H2O)2, respectively, two eight- and nine-coordinated YbIII enantiomeric pairs, namely, Yb(tta)31LR/Yb(tta)31LS (Yb-R-1/Yb-S-1) and [Yb(tta)32LR]·CH3CN/[Yb(tta)32LS]·CH3CN (Yb-R-2/Yb-S-2), were isolated, in which Htta = 2-thenoyltrifluoroacetone, 1LR/1LS = (-)/(+)-4,5-pinene-2,2'-bipyridine, and 2LR/2LS = (-)/(+)-2,6-bis(4',5'-pinene-2'-pyridyl)pyridine. Interestingly, they not only present distinct degrees of chirality but also show large differences in near-infrared (NIR) photoluminescence (PL), circularly polarized luminescence (CPL), and second-harmonic generation (SHG). Eight-coordinated Yb-R-1 with an asymmetric bidentate 1LR ligand has a high NIR-PL quantum yield (1.26%) and a long decay lifetime (20 µs) at room temperature, being more than two times those (0.48%, 8 µs) of nine-coordinated Yb-R-2 with a C2-symmetric tridentate 2LR ligand. In addition, Yb-R-1 displays an efficient CPL with a luminescence dissymmetry factor glum = 0.077, being 4 × Yb-R-2 (0.018). In particular, Yb-R-1 presents a strong SHG response (0.8 × KDP), which is 8 × Yb-R-2 (0.1 × KDP). More remarkably, the precursor Yb(tta)3(H2O)2 exhibits a strong third-harmonic generation (THG) response (41 × α-SiO2), while the introduction of chiral N-donors results in the switching of THG to SHG. Our interesting findings provide new insights into both the functional regulation and switching in multifunctional lanthanide molecular materials.

3.
Front Chem ; 10: 974914, 2022.
Article in English | MEDLINE | ID: mdl-36003620

ABSTRACT

A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8] geometry, which can be described as a twisted square antiprism (D 4d symmetry). Neighboring Dy(III) ions are interconnected by deprotonated Hm-dobdc3- ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H2O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier U eff/k B and relaxation time τ 0 are 35.3 K and 1.31 × 10-6 s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77 × 10-8 S cm-1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.

4.
Inorg Chem ; 61(24): 9283-9294, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35658475

ABSTRACT

Using Dy(dbm)3(H2O) and Dy(btfa)3(H2O)2 to react with enantiopure N-donors, (-)/(+)-4,5-pinenepyridyl-2-pyrazine (LR/LS), respectively, two pairs of chiral DyIII enantiomers, Dy(dbm)3LR/Dy(dbm)3LS (R-1-Dy/S-1-Dy) and Dy(btfa)3LR/Dy(btfa)3LS (R-2-Dy/S-2-Dy) were obtained, wherein one of the benzene rings of dbm- (dibenzoylmethanate) in R-1-Dy/S-1-Dy is displaced by the -CF3 group of btfa- (4,4,4-trifluoro-1-phenyl-1,3-butanedionate) in R-2-Dy/S-2-Dy. Interestingly, this substitution results not only in giant differences in their single-ion magnetic (SIM) performances but also in their completely different nonlinear optical (NLO) responses. R-1-Dy presents a large effective energy barrier (Ueff = 265.47 K) under zero applied field, being more than 4 × R-2-Dy (61.40 K). The discrepancy on their magnetic performances has been further elucidated by ab initio calculations. Meanwhile, R-1-Dy/S-1-Dy display the strongest third-harmonic generation responses (35/33 × α-SiO2) among the known lanthanide NLO-active coordination compounds (CCs). On the contrary, R-2-Dy/S-2-Dy exhibit moderate second-harmonic generation responses (0.65/0.70 × KDP). These results not only give the first example of the CCs with both SMM/SIM behavior and a THG response but also provide an efficient strategy for achieving the function regulation and switch in multifunctional CCs.

5.
Inorg Chem ; 61(13): 5388-5396, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35319197

ABSTRACT

A multifunctional metal-organic framework, (Hdmbpy)[Dy(H2dobdc)2(H2O)]·3H2O (Dy-MOF, H4dobdc = 2,5-dihydroxyterephthalic acid, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), was synthesized and structurally characterized. The metal center DyIII is connected by four carboxyl groups to form the [Dy2(CO2)4] binuclear nodes, which are further interconnected by eight separate H2dobdc2- ligands to form a three-dimensional (3D) framework including hydrophilic triangular channels and abundant hydrogen-bonding networks. Dy-MOF has good stability in aqueous solution as well as in harsh acidic or alkaline solutions (pH range: 2.0-12.0). Furthermore, the luminescence signal of Dy-MOF undergoes a visualized color change as the acidity of the solution alters, which is the typical behavior of pH ratiometric probe. At a 100% relative humidity, Dy-MOF exhibits a high proton conductivity σ (1.70 × 10-4 S cm-1 at 303 K; 1.20 × 10-3 S cm-1 at 343 K) based on the proton hopping mechanism, which can be classified as a superionic conductor with σ exceeding 10-4 S cm-1. Additionally, the ferromagnetic interaction and magnetic relaxation behavior are simultaneously achieved in Dy-MOF. Herein, the combination of luminescence sensing, magnetism, and proton conduction in a single-phase 3D MOF may offer great potential applications in smart multitasking devices.

6.
Org Biomol Chem ; 20(1): 122-126, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34874368

ABSTRACT

A Yb(OTf)3 catalyzed [1,3]-rearrangement of 3-alkenyl oxindoles was achieved, affording a variety of multifunctional 3-ylideneoxindoles with good yields and Z/E selectivities (64%-89% yield, 78 : 22->99 : 1 Z/E). Importantly, an operationally simple, one-pot sequential catalytic synthesis of 3-ylideneoxindoles was also developed. Additionally, a cross [1,3]-rearrangement experiment and nonracemic transformation were also carried out, which indicated a concerted rearrangement mechanism of this methodology.

7.
Inorg Chem ; 60(9): 6813-6819, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33886310

ABSTRACT

One novel three-dimensional (3-D) copper(I)-thioarsenate(III) [Ni(en)3]Cu4As4S9 (1, en = ethylenediamine) has been solvothermally prepared with the utilization of the in situ formation of [Ni(en)3]2+ complex as structure-directing agent (SDA). 1 contains cubane-like [Cu8S12]16- clusters and rare tetrameric [As4S9]6- units, which are interconnected to generate the first example of a 3-D anionic framework [Cu4As4S9]n2n-, topologically identical to pyrite, and having large channels filled by [Ni(en)3]2+ complex cations. 1 is a potential wide-band-gap semiconductor with an energy gap of 1.91 eV that exhibits selectively photocatalytic degradation of methylene blue under visible-light irradiation. The density functional theory calculation, photocurrent response, and magnetic properties of 1 were also investigated.

8.
J Org Chem ; 86(6): 4825-4834, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33635652

ABSTRACT

We described a Ni-bidentate oxazoline catalyzed highly enantio- and diastereoselective decarboxylative aldol reaction of 2-oxotetrahydrofuran-3-carboxylic acid/2-oxochromane-3-carboxylic acid derivatives with different kinds of carbonyls. Under optimal reaction conditions, α-substituted ß-hydroxy butyrolactones and dihydrocoumarins with an all-carbon quaternary stereocenter have been generated with high levels of functional-group compatibility. Furthermore, proficient transformations of products were also described, in which an aliphatic tertiary alcohol and a multi-substituted 1,4-diol were smoothly constructed through hydrogenation and ring-opening reaction, respectively.


Subject(s)
Lactones , Catalysis , Hydrogenation , Molecular Structure , Stereoisomerism
9.
Dalton Trans ; 50(3): 1007-1018, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33355317

ABSTRACT

Two homochiral EuIII and SmIII tris(ß-diketonate) enantiomeric pairs, based on fluorinated ß-diketone (Hbtfa) and enantiopure asymmetric N,N'-donor ligands (LR and LS), Λ-Eu(btfa)3LR (R-1-Eu)/Δ-Eu(btfa)3LS (S-1-Eu) and Λ-Sm(btfa)3LR (R-2-Sm)/Δ-Sm(btfa)3LS (S-2-Sm) (btfa- = 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and LR/LS = (-)/(+)-4,5-pineno-2,2'-bipyridine) were synthesized. The electronic circular dichroism (ECD) spectra confirmed their enantiomeric nature. R-1-Eu/S-1-Eu and R-2-Sm/S-2-Sm exhibit intense characteristic emissions of EuIII (red) and SmIII (orange-red) ions both in the solid state and in DCM with long lifetimes and high luminescence quantum yields. For example, the overall quantum yields reach up to 61% and 53% along with very high sensitization efficiency values of 82 and 79 for R-1-Eu in the solid state and in DCM, respectively. Notably, the corresponding values are determined to be 6.5% (solid state) and 3.1% (DCM) for R-2-Sm, which are among the highest quantum yields for rare SmIII tris(ß-diketonate) luminescent complexes reported to date. Furthermore, R-1-Eu and R-2-Sm show a strong triboluminescence (TL) phenomenon visible with the naked eye in daylight. Moreover, R-1-Eu/S-1-Eu and R-2-Sm/S-2-Sm show circularly polarized luminescence (CPL) properties. Particularly, the luminescence dissymmetry factors (glum) for R-2-Sm/S-2-Sm are larger than those for R-1-Eu/S-1-Eu despite the fact that SmIII complexes usually show poorer emission than EuIII homologues, which is very rare in the reported EuIII and SmIII CPL-active complexes.

10.
Org Lett ; 21(17): 6684-6689, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31393737

ABSTRACT

A Ni-oxazoline complex-catalyzed asymmetric decarboxylative aldol reaction between malonic acid half-oxyesters and various carbonyls with carboxylate assistance was developed, affording structurally diverse ß-hydroxy esters with good yields and enantioselectivities under mild conditions. Importantly, the broad substrate scope of this methodology enabled rapid accesses to several natural products and their analogues as exemplified by phenylpropanoid, phaitanthrin B, and phthalide.

11.
Front Chem ; 6: 300, 2018.
Article in English | MEDLINE | ID: mdl-30175093

ABSTRACT

A chiral phosphoric acid promoted enantioselective NMR analysis of atropisomeric quinazolinones was described, in which a variety of racemic arylquinazolinones such as afloqualone and IC-87114 were well recognized with up to 0. 21 ppm ΔΔδ value. With this method, the optical purities of different non-racemic substrates can be fast evaluated with high accuracy.

12.
Org Biomol Chem ; 15(20): 4314-4319, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28470312

ABSTRACT

A chiral phosphoric acid promoted enantioselective NMR recognition and determination of indoloquinazoline alkaloids phaitanthrin A, cephalanthrin-A and their analogues was described, which conveniently reveals their optical purities with high accuracy. Besides, pyrazine type tertiary alcohols, cyclic amino alcohols and diamines can also be well resolved under optimal conditions. Importantly, this methodology was further employed in the direct analysis of reaction mixtures of amino acid metal salt catalyzed asymmetric synthesis of phaitanthrin A, providing access to the optimized reaction conditions in high efficiency.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/analysis , Phosphoric Acids/chemistry , Quinazolinones/analysis , Molecular Structure , Proton Magnetic Resonance Spectroscopy
13.
Chem Commun (Camb) ; 53(28): 3998-4001, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28338140

ABSTRACT

The structures and properties of two mononuclear Dy(iii) enantiomeric pairs were dramatically controlled by crystallization temperature; the enantiomeric pair with coordinated chiral N,N'-donor ligands exhibits enhanced single-ion magnetic, ferroelectric and chiroptical properties with respect to the other one with protonated chiral N,N'-donor ligands.

14.
Dalton Trans ; 45(12): 5253-61, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26894939

ABSTRACT

A series of lanthanide fumarates [Sm2(fum)3(H2fum)(H2O)2] (1, H2fum = fumaric acid), [Ln2(fum)3-(H2O)4]·3H2O {Ln = Tb (2a), Dy (2b)} and [Ln2(fum)3(H2O)4] {Ln = Y (3a), Ho (3b), Er (3c), Tm (3d)} were prepared by the hydrothermal method and their structures were classified into three types. The 3-D framework of compound 1 contains a 1-D infinite [Sm-O-Sm]n chain built up from the connection of SmO8(H2O) polyhedra sharing edges via three -COO group bridges of fumarate ligands, which is further constructed into a 3-D network structure with three kinds of fumarate ligands. Compounds 2a-b are isostructural and consist of a 3-D porous framework with 0-D cavities for the accommodation of chair-like hexameric (H2O)6 clusters. Compounds 3a-d are isostructural and have a 3-D network structure remarkably different from those of 1 and 2a-b, due to the different coordination numbers for the Ln(3+) ions and distinct fumarate ligand bridging patterns. A systematic investigation of seven lanthanide fumarates and five reported compounds revealed that the well-known lanthanide contraction has a significant influence on the formation of lanthanide fumarates. The magnetic properties of compounds 1, 2b and 3b-3d were also investigated.

15.
Dalton Trans ; 45(14): 6015-22, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26300127

ABSTRACT

A series of new 1-D organic hybrid lanthanoid thioarsenates [Ln(dap)2]2(µ-η(1):η(1):η(1):η(1)-AsS4)(µ-η(1):η(1)-As(V)S4)]n {Ln = Ce (Ia), Pr (Ib), Nd (Ic), and Sm (Id); dap = diaminopropane} have been prepared under solvothermal conditions and structurally characterized. Compounds Ia-d contain two [As(V)S4](3-) linkage modes, namely µ-η(1):η(1):η(1):η(1)-As(V)S4 and µ-η(1):η(1)-As(V)S4, which are linked alternately with [Ln(dap)2](3+) groups into 1-D neutral chains [Ln(dap)2]2(µ-η(1):η(1):η(1):η(1)-As(V)S4)(µ-η(1):η(1)-As(V)S4)]n, which represent the first examples of 1-D organic hybrid lanthanoid thioarsenates based on two [As(V)S4](3-) linkage modes. To learn more about the influence of lanthanide contraction on the formation of lanthanoid thioarsenates, five organic hybrid lanthanoid thioarsenates [Ln(dap)3As(V)S4] [Ln = Tb (IIa), Dy (IIb), Ho (IIIc), and Er (IIId)] and [Er(dien)2As(V)S4] (III, dien = diethylenetriamine) are also provided. Both II and III contain neutral lanthanide-centred complexes, where the tetrahedral anion [As(V)S4](3-) acts as a chelating ligand to the complex [Ln(dap)3](3+)/[Er(dien)2](3+) cation. Their optical properties have been characterized by UV-vis spectra, and the density functional theory calculation of Ia has been performed.

16.
Dalton Trans ; 44(16): 7203-12, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25790301

ABSTRACT

A series of new lanthanoid thioarsenates [Ln(teta)(µ-η(1):η(2):η(1)-As(III)S3)]n {Ln = Ce (Ia), Pr (Ib), Nd (Ic), and Sm (Id); teta = triethylenetetramine} and [Ln(teta)(en)(µ-η(1):η(1):η(1)-As(V)S4)]n {Ln = La (IIa), Ce (IIb), Pr (IIc), and Nd (IId); en = ethylenediamine} were prepared by the solvothermal reaction of K3AsO3, S, LnCl3 and organic amines and structurally characterized. Compounds Ia­d crystallise in the orthorhombic space group Aba2 and display 1-D neutral chains [Ln(teta)(µ-η(1):η(2):η(1)-As(III)S3)]n, which represent the first examples of 1-D organic hybrid lanthanoid sulfides built up from trigonal-pyramidal [As(III)S3](3-) acting as tetradentate bridging ligands to interlink [Ln(teta)](3+) ions, while compounds IIa­d crystallise in the orthorhombic space group P2(1)2(1)2(1) and consist of other 1-D neutral chains [Ln(teta)(en)(µ-η(1):η(1):η(1)-As(V)S4)]n, which are built up from the linkages of the tetrahedral [As(V)S4](3-) ion and the [Ln(teta)(en)](3+) ion. To learn more about the influence of lanthanide contraction on the formation of lanthanoid thioarsenates, three organic hybrid lanthanoid thioarsenates [Ln(teta)(en)As(V)S4] [Ln = Dy (IIIa), Ho (IIIb), and Tm (IIIc)] with the neutral molecular structure type in the monoclinic centrosymmetric space group P2(1)/c are also presented. Their optical and magnetic properties have been investigated, and density functional theory calculations of Ia and IIa have also been performed.

17.
Dalton Trans ; 44(13): 6032-9, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25723709

ABSTRACT

A series of new lanthanoid selenidoantimonates(V) [Ln(en)(tepa)SbSe4] (Ln = La (Ia), Ce (Ib), Pr (Ic); en = ethylenediamine, tepa = tetraethylenepentamine) and [Ln2(tepa)2(µ-OH)2Cl2]-{[Ln(tepa)]2(µ-OH)2(SbSe4)2} (Ln = Y (IIa), Sm (IIb), Gd (IIc), Tb (IId), Dy (IIe), and Tm (IIf)) were solvothermally synthesized and structurally characterized. The structures of Ia-c consist of neutral molecules [Ln(en)(tepa)SbSe4], where the tetrahedral [SbSe4](3-) anion acts as a ligand to chelate the [Ln(en)(tepa)](3+) cation. The structures of IIa-f contain isolated dinuclear [Ln2(tepa)2(µ-OH)2Cl2](2+) cations built up from two [Ln(tepa)Cl](2+) ions linked by two -OH bridging groups and organic decorated {[Ln(tepa)]2(µ-OH)2(SbSe4)2}(2-) anions based on two [Ln(tepa)SbSe4] units bridged by two -OH groups. Although a few lanthanoid selenidoantimonates(V) under solvothermal conditions have been reported, their lanthanide complexes normally appear mononuclear. Hence, IIa-f are rare examples of lanthanoid selenidoantimonates based on dinuclear lanthanide complexes. A preliminary investigation of nine lanthanoid selenidoantimonates(V) shows that the well-known lanthanide contraction has a significant influence on the formation of lanthanoid selenidoantimonates(V) under solvothermal conditions. The absorption edges of all compounds have been investigated by UV-vis spectroscopy, and density functional theory calculations for Ia and IIc have also been performed.

18.
Dalton Trans ; 44(3): 1350-7, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25421214

ABSTRACT

Two types of lanthanide selenidostannates(iv) [Ln2(tepa)2(µ-OH)2Sn2Se6] {Ln = Y(), Pr (), Dy (), Er (), Tm (); tepa = tetraethylenepentamine} and [Ln2(tepa)2(µ2-OH)2Cl2]2[Sn4Se10]·4H2O {Ln = Y (), Dy (), Er (), Tm ()} have been synthesized under identical solvothermal conditions and characterized structurally. Type I (, , , and ) displays 1-D neutral chains [Ln2(tepa)2(µ-OH)2Sn2Se6]n, while type II (, , and ) contains discrete adamantane-like [Sn4Se10](4-) ions with binuclear lanthanide complex [Ln2(tepa)2(µ-OH)2Cl2](2+) ions as counterions. Although the solvothermal synthetic methods could result in the formation of various transition-metal chalcogenidometalates, such identical experimental conditions usually result in the only stable phases of lanthanide chalcogenidometalates. Hence, two different lanthanide selenidostannates(iv), obtained under same solvothermal conditions and starting materials, have been first observed in this work. The optical properties of all the compounds have been investigated by UV-vis spectra.


Subject(s)
Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Selenium/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Magnetics , Molecular Conformation , Solvents/chemistry , Spectrophotometry, Ultraviolet , Temperature
19.
Dalton Trans ; 43(46): 17226-9, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25366847

ABSTRACT

Two second-order nonlinear optically (NLO)-active dinuclear and square Cu(II) enantiomeric pairs were obtained via the self-assemblies of enantiopure linear bis-bidentate ligands with different copper(II) salts under the identical reaction conditions. Their magnetic properties are switched from antiferromagnetic to ferromagnetic coupling.

20.
Dalton Trans ; 43(32): 12306-12, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24986054

ABSTRACT

Three new holmium selenidostannates(iv), [Ho(dap)4]2[Sn2Se6]Cl2 (, dap = diaminopropane), {[Ho(dien)2]2(µ2-OH)2}[Sn2Se6] (, dien = diethylenetriamine), and [Ho2(tepa)2(µ2-OH)2Cl2]2[Sn4Se10]·4H2O (, tepa = tetraethylenepentamine), have been solvothermally synthesized and structurally characterized. consists of two mononuclear [Ho(dap)4](3+) complex cations, one [Sn2Se6](4-) anion built up from two [SnSe4] tetrahedra sharing a common edge, and two Cl(-) ions. consists of one binuclear holmium(iii) complex {[Ho(dien)2]2(µ2-OH)2}(4+) cation and one dimeric [Sn2Se6](4-) anion. is composed of rare binuclear holmium(iii) complex [Ho2(tepa)2(µ2-OH)2Cl2](2+) cations, adamantane-like [Sn4Se10](4-) and free water molecules. Although a few chalcogenidostannates(iv) with lanthanide(iii) complex cations acting as counterions have been reported, their anions are strongly dominated by the dimeric [Sn2Se6](4-) moieties. represents a rare example of an adamantane-like [Sn4Se10](4-) selenidostannate with lanthanide complexes as counterions. The optical properties of have been investigated by UV-vis spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...