Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Genes (Basel) ; 14(7)2023 07 07.
Article in English | MEDLINE | ID: mdl-37510313

ABSTRACT

Salt and osmotic stress seriously restrict the growth, development, and productivity of horticultural crops in the greenhouse. The papain-like cysteine proteases (PLCPs) participate in multi-stress responses in plants. We previously demonstrated that salt and osmotic stress affect cysteine protease 15 of pepper (Capsicum annuum L.) (CaCP15); however, the role of CaCP15 in salt and osmotic stress responses is unknown. Here, the function of CaCP15 in regulating pepper salt and osmotic stress resistance was explored. Pepper plants were subjected to abiotic (sodium chloride, mannitol, salicylic acid, ethrel, methyl jasmonate, etc.) and biotic stress (Phytophthora capsici inoculation). The CaCP15 was silenced through the virus-induced gene silencing (VIGS) and transiently overexpressed in pepper plants. The full-length CaCP15 fragment is 1568 bp, with an open reading frame of 1032 bp, encoding a 343 amino acid protein. CaCP15 is a senescence-associated gene 12 (SAG12) subfamily member containing two highly conserved domains, Inhibitor 129 and Peptidase_C1. CaCP15 expression was the highest in the stems of pepper plants. The expression was induced by salicylic acid, ethrel, methyl jasmonate, and was infected by Phytophthora capsici inoculation. Furthermore, CaCP15 was upregulated under salt and osmotic stress, and CaCP15 silencing in pepper enhanced salt and mannitol stress resistance. Conversely, transient overexpression of CaCP15 increased the sensitivity to salt and osmotic stress by reducing the antioxidant enzyme activities and negatively regulating the stress-related genes. This study indicates that CaCP15 negatively regulates salt and osmotic stress resistance in pepper via the ROS-scavenging.


Subject(s)
Capsicum , Osmoregulation , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Capsicum/genetics , Antioxidants/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Mannitol/pharmacology
2.
Int J Mol Sci ; 24(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37108097

ABSTRACT

The nuclear factor Y (NF-Y) transcription factor contains three subfamilies: NF-YA, NF-YB, and NF-YC. The NF-Y family have been reported to be key regulators in plant growth and stress responses. However, little attention has been given to these genes in melon (Cucumis melo L.). In this study, twenty-five NF-Ys were identified in the melon genome, including six CmNF-YAs, eleven CmNF-YBs, and eight CmNF-YCs. Their basic information (gene location, protein characteristics, and subcellular localization), conserved domains and motifs, and phylogeny and gene structure were subsequently analyzed. Results showed highly conserved motifs exist in each subfamily, which are distinct between subfamilies. Most CmNF-Ys were expressed in five tissues and exhibited distinct expression patterns. However, CmNF-YA6, CmNF-YB1/B2/B3/B8, and CmNF-YC6 were not expressed and might be pseudogenes. Twelve CmNF-Ys were induced by cold stress, indicating the NF-Y family plays a key role in melon cold tolerance. Taken together, our findings provide a comprehensive understanding of CmNF-Y genes in the development and stress response of melon and provide genetic resources for solving the practical problems of melon production.


Subject(s)
Genes, Plant , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Gene Expression Regulation, Plant , Phylogeny
3.
PLoS One ; 16(3): e0247578, 2021.
Article in English | MEDLINE | ID: mdl-33711032

ABSTRACT

To select the optimum fertilizer application under specific irrigation levels and to provide a reliable fertigation system for tomato plants, an experiment was conducted by using a microporous membrane for water-fertilizer integration under non-pressure gravity. A compound fertilizer (N:P2O5:K2O, 18:7:20) was adopted for topdressing at four levels, 1290 kg/ha, 1140 kg/ha, 990 kg/ha, and 840 kg/ha, and the locally recommended level of 1875 kg/ha was used as the control to explore the effects of different fertilizer application rates on growth, nutrient distribution, quality, yield, and partial factor of productivity (PFP) in tomato. The new regime of microporous membrane water-fertilizer integration under non-pressure gravity irrigation reduced the fertilizer application rate while promoting plant growth in the early and intermediate stages. Except for the 990 kg/ha fertilizer treatment, yields per plant and per plot for each fertilizer application rate were higher than or equal to those of the control. The new regime could effectively improve PFP and reduce soil nutrient enrichment. Fertilizer at 840 kg/ha showed the optimum results by increasing PFP by 75.72% as compared to control. In conclusion, the fertilizer rate at 840 kg/ha has not only maintained the productivity of soil but also tomato growth and quality of fruit which makes the non-pressure gravity irrigation a potential and cost-effective way for fertilizer application.


Subject(s)
Agricultural Irrigation/methods , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Fertilizers , Fruit/chemistry , Fruit/growth & development , Nutritive Value , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Gravitation , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Soil/chemistry , Solubility , Water/chemistry
4.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2630-2636, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-34494785

ABSTRACT

We explored the effects of sub-low temperature and drought on water transport in tomato seedlings under normal temperature (25 ℃ day/18 ℃ night) and sub-low temperature (15 ℃ day/8 ℃ night) within the artificial climate chamber, and under normal irrigation (75%-85% field water holding capacity) and drought treatment (55%-65% field water holding capacity). We analyzed the effects of temperature and soil moisture on water transport, stomata and xylem vessel morpholo-gical and anatomical structure of tomato plants. The results showed that compared with condition of normal temperature + normal irrigation, drought treatment significantly reduced leaf water potential, transpiration rate, stomatal conductance, hydraulic conductance, sap flow rate, stomatal length, and diameter of leaf, stem and root conduit, and thus thickened the cell wall and enhanced the anti-embolism ability of conduit in leaf, stem and root. Leaf water potential, transpiration rate, stomatal conductance, hydraulic conductance, and conduit diameter in leaf, stem and root were significantly reduced by sub-low temperature treatment, but the stomata became larger, cell wall was thickened and the anti-embolism ability was enhanced in leaf, stem and root conduit. Under sub-low temperature condition, soil moisture did not affect leaf water potential, transpiration rate, stomatal conductance, hydraulic conductance, stomatal morphology, conduit structure of leaf and root. In conclusion, under drought treatment, the homeostasis in water relationship was obtained by the coordination of leaf, stem and root structure. Under sub-low temperature treatment, the regulation of water relationship was mainly dependent on the changes of conduit structure in leaf and root, which was less affected by soil moisture.


Subject(s)
Plant Transpiration , Solanum lycopersicum , Droughts , Plant Leaves , Plant Stomata , Soil , Temperature , Water
5.
BMC Biotechnol ; 15: 100, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26498743

ABSTRACT

BACKGROUND: Pheophorbide a oxygenase (PAO) is an important enzyme in the chlorophyll catabolism pathway and is involved in leaf senescence. It opens the porphyrin macrocycle of pheophorbide a and finally forms the primary fluorescent chlorophyll catabolite. Previous studies have demonstrated the function of PAO during cell death. However, the characterizaton of PAO during leaf senescence induced by environmental factors is not well understood. METHODS: Homology-based cloning and RACE techniques were used to obtain the full-length cDNA of the CaPAO gene. CaPAO expression was determined by quantitative real-time PCR. Function of CaPAO gene were studied using virus-induced gene silencing and transgenic techniques with tobacco plants (Nicotiana tabacum). RESULTS: A novel PAO gene CaPAO was isolated from pepper (Capsicum annuum L.). The full-length CaPAO cDNA is comprised of 1838 bp, containing an open reading frame of 1614 bp, and encodes a 537 amino acid protein. This deduced protein belongs to the Rieske-type iron-sulfur superfamily, containing a conserved Rieske cluster. CaPAO expression, as determined by quantitative real-time PCR, was higher in leaves than roots, stems and flowers. It was upregulated by abscisic acid, methyl jasmonate and salicylic acid. Moreover, CaPAO was significantly induced by high salinity and osmotic stress treatments and also was regulated by Phytophthora capsici. The virus-induced gene silencing technique was used to silence the CaPAO gene in pepper plants. After 3 days of high salt treatment, the chlorophyll breakdown of CaPAO-silenced pepper plants was retarded. RD29A promoter-inducible expression vector was constructed and transferred into tobacco plant. After 7 days of salt treatment, the leaves of transgenic plants were severely turned into yellow, the lower leaves showed necrotic symptom and chlorophyll content was significantly lower than that in the control plants. CONCLUSIONS: The expression of CaPAO gene was induced in natural senescence and various stresses. The CaPAO gene may be related to defense responses to various stresses and play an important role in salt-induced leaf senescence.


Subject(s)
Capsicum/genetics , Oxygenases/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Salt Tolerance/genetics , Amino Acid Sequence , Capsicum/enzymology , Cloning, Molecular , Molecular Sequence Data , Oxygenases/chemistry , Oxygenases/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Salt-Tolerant Plants/genetics , Sequence Alignment , Nicotiana/genetics , Nicotiana/physiology
6.
Gene ; 563(1): 87-93, 2015 May 25.
Article in English | MEDLINE | ID: mdl-25770051

ABSTRACT

Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 µM HgCl2 and 100 µM fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method.


Subject(s)
Capsicum/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Abscisic Acid/pharmacology , Capsicum/drug effects , Capsicum/physiology , Cloning, Molecular , Gene Expression Regulation, Plant/drug effects , Gene Silencing , Mannitol/pharmacology , Mercuric Chloride/pharmacology , Phylogeny , Phytophthora/pathogenicity , Plant Proteins/metabolism , Pyridones/pharmacology , Salicylic Acid/pharmacology , Stress, Physiological/genetics
7.
Int J Mol Sci ; 15(11): 20101-16, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25375192

ABSTRACT

Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco.


Subject(s)
Capsicum/genetics , Genes, Plant , Nicotiana/genetics , Nicotiana/physiology , Osmotic Pressure , Plant Proteins/genetics , Stress, Physiological/genetics , Antioxidants/metabolism , Capsicum/enzymology , Capsicum/physiology , Catalase/metabolism , Cell Death , Cell Survival , Electrolytes/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Malondialdehyde/metabolism , Peroxiredoxins/metabolism , Phenotype , Plant Leaves/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Seedlings/growth & development , Subcellular Fractions/metabolism , Superoxide Dismutase/metabolism , Water
8.
Int J Mol Sci ; 15(5): 8316-34, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24823878

ABSTRACT

Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper.


Subject(s)
Capsicum/physiology , Cysteine Proteases/genetics , Osmotic Pressure , Plant Leaves/physiology , Plant Proteins/genetics , Amino Acid Sequence , Capsicum/chemistry , Capsicum/genetics , Cysteine Proteases/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Gene Silencing , Molecular Sequence Data , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Proteins/chemistry , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...